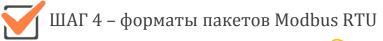
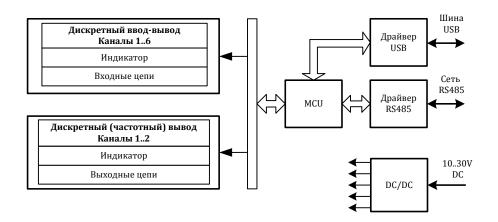
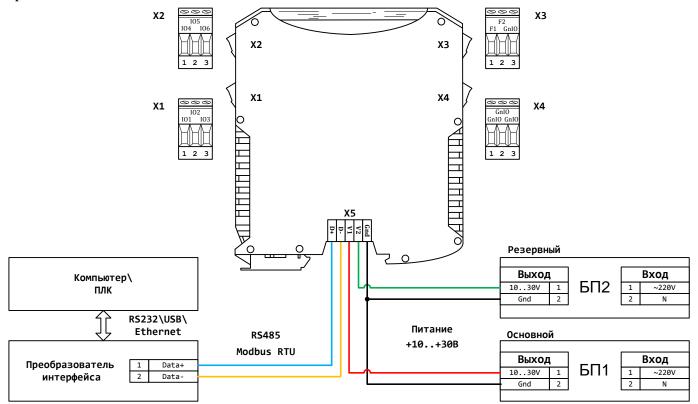
Модули УСО с RS485 серии BUS

БЫСТРЫЙ СТАРТ

WAD-DOF-BUS(USB)

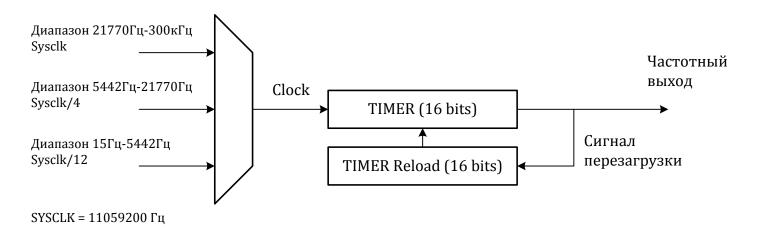

Шесть каналов дискретного ввода-вывода
Два канала дискретного вывода (частотные)
Входы: «сухой контакт», постоянные уровни, переменные уровни
Выходы: открытый коллектор (Ітах = 100мА)
Диапазон формируемых частот от 15Гц до 300кГц
Групповая гальваническая развязка
Интерфейс USB/RS485 (Modbus RTU)





ШАГ 1 - структура, питание и сеть RS485

Структурная схема устройства:

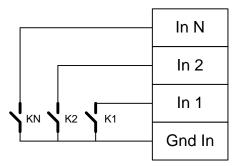

Питание устройства осуществляется от источника, выдающего постоянное напряжение в диапазоне от 10В до 30В. Потребляемая мощность устройства не более 1,5Вт. Питание подается на разъем X5.

Для работы можно использовать как один из блоков питания, так и оба одновременно. Во втором случае получим резервирование по питанию. Тогда, при выходе из строя одного из БП, другой БП будет продолжать запитывать устройство.

ШАГ 2 - формирование сетки частот

В зависимости от поддиапазона на вход таймера (делителя) подается сигнал различной частоты. Формула для вычисления значения делителя:

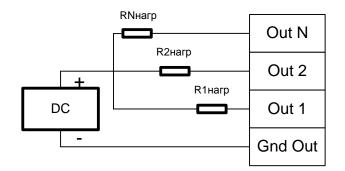
Где, Divider – целое число, заносимое в делитель, Clock – частота, подаваемая на вход делителя, Frequency – требуемое значение частоты. Ошибка при формировании частоты возникает за счет округления делителя (Divider). Реальное значение частоты можно вычислить по формуле, которая выводится с предыдущей:

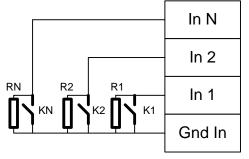

Пример. Пусть нужно сформировать частоту равную 17564Гц. Это значение находится в диапазоне 5442Гц – 21770Гц. Следовательно, Clock = Sysclk / 4. Тогда делитель равен:

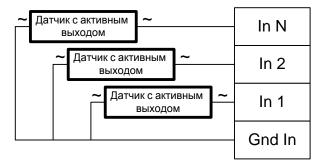
Реальная частота соответственно будет равна:

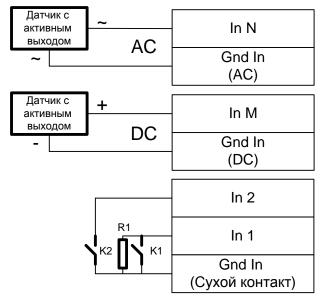
Frequency =
$$2764800 / (2 * 79) = 17498.73\Gamma \mu$$

Ошибка составляет:


ШАГ 3 - схемы подключения


Подключение ключей без возможности контроля обрыва линии


Подключение датчиков с активным выходом в режиме «Потенциальный вход»


Подключение линий дискретного и частотного вывода типа «Открытый коллектор»

Подключение ключей и резисторов тока покоя для контроля обрыва линии

Подключение датчиков с активным выходом в режиме «Переменный вход»

Смешанное подключение различных типов сигналов

Соотношение входов и выходов, а также их типы определяется при заказе. Если модуль содержит разные типы входных каналов, то при этом каждый тип канала будет иметь свой общий провод. Эта информация будет отображена в паспорте на конкретное устройство, а также на боковой наклейке корпуса устройства.

ШАГ 4 – форматы пакетов Modbus RTU

Параметры обмена по умолчанию

 Скорость обмена:
 9600

 Адрес устройства:
 1

Старт	9 5	Стоп
бит	8 бит данных	бит

Карта регистров:

Tapia permerposi									
Адрес регистра, НЕХ	Название	Тип данных	Назначение						
2005	Канал DO1	uint16_t	Значение канала DO1						
2006	Канал DO2	uint16_t	Значение канала DO2						
2007	Канал DO3	uint16_t	Значение канала DO3						
2008	Канал DO4	uint16_t	Значение канала DO4						
2009	Канал D05	uint16_t	Значение канала D05						
200A	Канал D06	uint16_t	Значение канала D06						
200B	Канал DI1	uint16_t	Значение канала DI1						
200C	Канал DI2	uint16_t	Значение канала DI2						
200D	Канал DI3	uint16_t	Значение канала DI3						
200E	Канал DI4	uint16_t	Значение канала DI4						
200F	Канал DI5	uint16_t	Значение канала DI5						
2010	Канал DI6	uint16_t	Значение канала DI6						

Адрес регистра, НЕХ	Название	Тип данных	Назначение
2011-2012	Канал F1	float	Значение частоты канала 1
2013-2014	Канал F2	float	Значение частоты канала 2
2015-2016	Канал F1	int32_t	Значение частоты канала 1
2017-2018	Канал F2	int32_t	Значение частоты канала 2
2019	MCU temp	int16_t	Температура MCU
201A	Все каналы DO	uint16_t	Значение всех каналов DO
201B	Все каналы DI	uint16_t	Значение всех каналов DI
201C	DI Обрыв линии	uint16_t	Состояние «Обрыв линии» по всем каналам DI

Запрос для записи состояния всех DO-каналов:

				D0 каналы	CRC			
01	10	20	1A	00	01	02	uint16	uint16_t

Ответ:

01	10	20	1A	00	01	2B	CE

Запрос для чтения состояния всех DI-каналов:

01	03	20	1B	00	01	FF	CD

Ответ:

			Состояние каналов	CRC
01	03	02	uint16	uint16_t

Запрос для записи состояния частотных каналов:

		Канал F1	Канал F2	CRC					
01	10	20	11	00	04	08	float	float	uint16_t

Ответ:

01	10	20	11	00	04	9A	0F
----	----	----	----	----	----	----	----

Порядок следования байт в ответе стандартный: 3210. В случае если хост ожидает другую последовательность, то тогда устройству через регистр опций (см. полную карту регистров в руководстве программиста) нужно задать другой порядок.