

000 «Компания АКОН» Украина, г. Киев, 03058 ул. Лебедева-Кумача 5,оф.319 (+38067) 442-33-89 (+38044) 496-29-60 sales@akon.com.ua www.akon.com.ua

Skype: wadbus

Модули УСО с RS485 серии BUS

БЫСТРЫЙ СТАРТ

WAD-TC-BUS(USB)

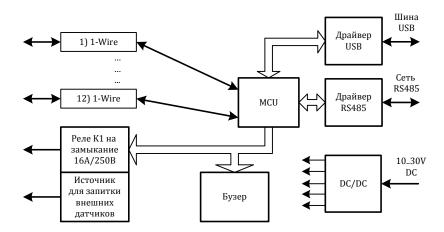
12 линий 1-Wire для подключения датчиков температуры DS18B20 Звуковая и релейная сигнализация Групповая гальваническая развязка Интерфейс RS485/USB (Modbus RTU)

ШАГ 2 – подключение датчиков

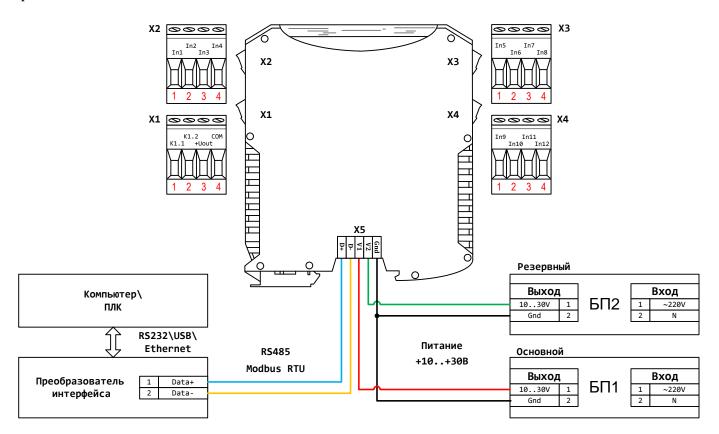
ШАГ 3 – форматы пакетов Modbus RTU - 1

ШАГ 4 – форматы пакетов Modbus RTU - 2

Аппаратное обеспечение: Батрак <mark>В</mark>адим (дирек<mark>т</mark>ор)


S wadbus

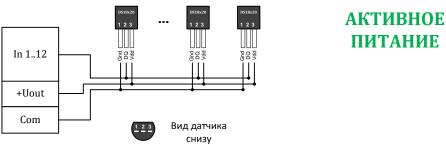
Программное обеспечение: Тимошенко Александр


alexandr.timoshenko

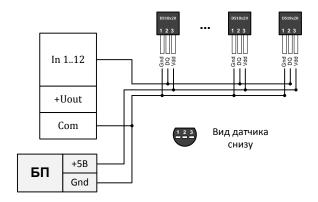
ШАГ 1 – структура, питание и сеть RS485

Структурная схема устройства:

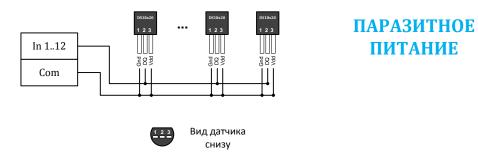
Питание устройства осуществляется от источника, выдающего постоянное напряжение в диапазоне от 10В до 30В. Потребляемая мощность устройства не более 1,5Вт. Питание подается на разъем X5.



Для работы можно использовать как один из блоков питания, так и оба одновременно. Во втором случае получим резервирование по питанию. Тогда, при выходе из строя одного из БП, другой БП будет продолжать запитывать устройство.


Напряжение источника (+Uout) для запитки внешних датчиков: +5B; Imax = 100мА

ШАГ 2 – подключение датчиков


Подключение датчиков по схеме с активным питанием от внутреннего источника

АКТИВНОЕ ПИТАНИЕ

ПИТАНИЕ

Подключение датчиков по схеме с активным питанием от внешнего источника ВАЖНО: объединить земли источника и модуля

Подключение датчиков по схеме с паразитным питанием

При активной запитке датчик производит одно измерение за 10мс, а при паразитной запитке за 700мс

ШАГ 3 - форматы пакетов Modbus RTU - 1

Параметры обмена по умолчанию

Скорость обмена: 9600 Адрес устройства: 1

Старт бит	8 бит данных	Стоп бит

Адресное пространство регистров модуля, начиная с адреса 0х1000 и 0х2000 доступно для чтения пакетами произвольной длины, используя функцию 0х03. На регистры этого пространства проецируются значения датчиков в той последовательности в которой они лежат в списке. В самом первом регистре (1000-1001, 0х2000), располагается значение температуры контроллера. Далее идут значения датчиков первой шины. К ним примыкают значения датчиков второй шины. И так далее. Если шина не имеет датчиков, то ее место занимает следующая за ней шина, имеющая датчики. В качестве примера рассмотрим следующую конфигурацию. Пусть есть 4 шины. Количество датчиков на каждой шине указано в таблице:

Датчики:

Номер шины	Количество датчиков
1	1
2	5
3	0
4	4

Карта регистров 0х2000:

Адрес регистра, НЕХ	Название	Тип данных	
2000	MCU temp	int16_t	
2001	Шина 1. Датчик 1	int16_t	
2002	Шина 2. Датчик 1	int16_t	
2003	Шина 2. Датчик 2	int16_t	
2004	Шина 2. Датчик 3	int16_t	
2005	Шина 2. Датчик 4	int16_t	
2006	Шина 2. Датчик 5	int16_t	
2007	Шина 4. Датчик 1	int16_t	
2008	Шина 4. Датчик 2	int16_t	
2009	Шина 4. Датчик 3	int16_t	
200A	Шина 4. Датчик 4	int16_t	

Карта регистров 0х1000:

Адрес регистра, НЕХ	Название	Тип данных
1000-1001	MCU temp	float
1002-1003	Шина 1. Датчик 1	float
1004-1005	Шина 2. Датчик 1	float
1006-1007	Шина 2. Датчик 2	float
1008-1009	Шина 2. Датчик 3	float
100A-100B	Шина 2. Датчик 4	float
100C-100D	Шина 2. Датчик 5	float
100E-100F	Шина 4. Датчик 1	float
1010-1011	Шина 4. Датчик 2	float
1012-1013	Шина 4. Датчик 3	float
1014-1015	Шина 4. Датчик 4	float

Все выше изложенное относится к прошивкам типа MultiSensor (на одной 1-Wire шине по несколько датчиков). Если прошивка SingleSensor (на одной 1-Wire шине по одному датчику с его автообнаружением), то эти две карты регистров имеют следующую структуру:

Адрес регистра, НЕХ	Название	Тип данных
2000	MCU temp	int16_t
2001	Шина 1. Датчик 1	int16_t
2002	Шина 2. Датчик 1	int16_t
2003	Шина 3. Датчик 1	int16_t
2004	Шина 4. Датчик 1	int16_t
2005	Шина 5. Датчик 1	int16_t
2006	Шина 6. Датчик 1	int16_t
2007	Шина 7. Датчик 1	int16_t
2008	Шина 8. Датчик 1	int16_t
2009	Шина 9. Датчик 1	int16_t
200A	Шина 10. Датчик 1	int16_t
200B	Шина 11. Датчик 1	int16_t
200C	Шина 12. Датчик 1	int16_t

Адрес регистра, НЕХ	Название	Тип данных
1000-1001	MCU temp	float
1002-1003	Шина 1. Датчик 1	float
1004-1005	Шина 2. Датчик 1	float
1006-1007	Шина 3. Датчик 1	float
1008-1009	Шина 4. Датчик 1	float
100A-100B	Шина 5. Датчик 1	float
100C-100D	Шина 6. Датчик 1	float
100E-100F	Шина 7. Датчик 1	float
1010-1011	Шина 8. Датчик 1	float
1012-1013	Шина 9. Датчик 1	float
1014-1015	Шина 10. Датчик 1	float
1016-1017	Шина 11. Датчик 1	float
1018-1019	Шина 12. Датчик 1	float

ШАГ 4 - форматы пакетов Modbus RTU - 2

В дополнение к предыдущему адресному пространству, в котором все датчики со всех шин располагаются друг за другом, в этом пространстве на каждую шину выделяется свои адреса. На регистры каждого пространства проецируются значения датчиков соответствующих им шин в той последовательности, в которой они находятся в списке. В самом первом регистре, располагается значение температуры контроллера. Далее идут значения датчиков. Адресное пространство регистров модуля, начиная с адреса 0х3000 доступно для чтения пакетами произвольной длины, используя функцию 0х03.

шина 1	3000	3001	3002		300N
шина 1	MCU temp	Датчик 1	Датчик 2		Датчик N
ШИНА 2	3100	3101	3102		310N
шипа 2	MCU temp	Датчик 1	Датчик 2		Датчик N
ШИНА m	3(m - 1)00	3(m - 1)01	3(m - 1)02		3(m - 1)0N
шинаш	MCU temp	Датчик 1	Датчик 2		Датчик N
ШИНА 12	3B00	3B01	3B02		3B0N
шипа 12	MCU temp	Датчик 1	Датчик 2		Датчик N

Запрос для чтения значений 20-ти первых датчиков на второй шине без значения датчика температуры MCU:

01 03 31	01 0	0 14	1A	F9	1
----------	------	------	----	----	---

Ответ:

			Д1	Д2	Д3	 Д20	CRC
01	03	28	int16_t	int16_t	int16_t	 int16_t	uint16_t

Что бы узнать реальную температуру, измеренную датчиком, нужно прочитанное с модуля значение разделить на 100.

