

КОНТРОЛЛЕР МИКРОПРОЦЕССОРНЫЙ

МИК-53Н

Руководство по эксплуатации ПРМК.421457.062 РЭ1 Данное руководство по эксплуатации является официальной документацией предприятия МИКРОЛ.

Продукция предприятия МИКРОЛ предназначена для эксплуатации квалифицированным персоналом, применяющим соответствующие приемы и только в целях, описанных в настоящем руководстве.

Коллектив предприятия МИКРОЛ выражает большую признательность тем специалистам, которые прилагают большие усилия для поддержки отечественного производства на надлежащем уровне, за то, что они еще сберегли свою силу духа, умение, способности и талант.

СОДЕРЖАНИЕ

	Стр.
1 Описание контроллера	
1.1 Назначение и общие характеристики	
1.2 Основные свойства	
1.3 Обозначение контроллера при заказе и комплект поставки	
1.4 Технические характеристики контроллера	0
2 Функциональные возможности	
2.1 Архитектура контроллера	
2.2 Функциональные блоковые диаграммы (FBD)	
2.3 Общие свойства функциональных блоков	
2.4 Возможности конфигурирования	
2.5 Сигналы и параметры	
3 Сетевая архитектура	21
3.1 Общее описание сети	
3.2 Физическая организация сети	
3.3 Логическая организация сети	
3.4 Коммуникационные функции	
4 Оперативное управление	31
4.1 Элементы оперативного управления	
4.2 Оперативное управление контурами регулирования	
4.3 Оперативное управление программным задатчиком	
4.4 Оперативное управление панелями индикации	
4.5 Оперативное управление панелью индикации входов функциональных блоков	
4.6 Оперативное управление панелью индикации выходов функциональных блоков	41
4.7 Оперативное управление панелью индикации и редактирования параметров функциональных блоков	42
4.8 Контроль ошибок	
1.6 1.6 1.1 posto cia si cara di cara	
5 Программирование, настройка и контроль	44
5.1 Лицевая панель в режиме программирования	
5.2 Технологическое программирование и тестирование	
6 Указание мер безопасности	53
7 Dengany votoue prv. v. Meutove	E A
7 Порядок установки и монтажа	
7.1 Общие указания 7.2 Требования к месту установки	
7.3 Соединение контроллера с внешними устройствами	
7.0 Обединение контрольтера о внешними убтроиотвами	
8 Организация ввода-вывода информации. Внешние соединения	55
8.1 Схема внешних соединений контроллера МИК-53Н-21	
8.2 Схема внешних соединений контроллера МИК-53Н-22	
8.3 Схема внешних соединений контроллера МИК-53H-23	
8.4 Схема внешних соединений контроллера МИК-53H-24	
8.5 Схема внешних соединений контроллера МИК-53H-31 8.6 Схема внешних соединений контроллера МИК-53H-32	
8.7 Схема внешних соединений контроллера МИК-53H-33	
8.8 Схема внешних соединений контроллера МИК-53Н-41	
8.9 Схема внешних соединений контроллера МИК-53Н-42	
8.10 Внешние соединения контроллеров МИК-53Н	
9 Подготовка к работе. Порядок работы	66
9.1 Общие указания	
9.2 Первое включение контроллера	
9.3 Программирование контроллера	
9.4 Калибровка, контроль и тестирование входов-выходов контроллера	

9.5 Включение контроллера в локальную управляющую сеть	
10 Техническое обслуживание	68
11 Транспортирование и хранение	68
12 Гарантии изготовителя	69

Настоящее руководство по эксплуатации (РЭ) предназначено для ознакомления потребителей с назначением, моделями, принципом действия, устройством, монтажом, эксплуатацией и обслуживанием микропроцессорных контроллеров МИК-53H (в дальнейшем - контроллеров МИК-53H).

РЭ состоит из двух самостоятельных документов.

В первом из них – «Контроллеры малоканальные многофункциональные микропроцессорные МИК-53H (ПРМК.421457.062 РЭ1)» – приводится описание состава, функциональных возможностей и инструкция по эксплуатации контроллеров МИК-53H.

Во втором – «Контроллеры малоканальные многофункциональные микропроцессорные МИК-51 (ПРМК.421457.005 РЭ2)» - описывается библиотека функциональных блоков контроллеров МИК-51, аналогом по функциональному назначению и возможностям которого является контроллер МИК-53H.

ВНИМАНИЕ!

Перед использованием контроллера, пожалуйста, ознакомьтесь с настоящим руководством по эксплуатации контроллеров МИК-53H.

Пренебрежение мерами предосторожности и правилами эксплуатации может стать причиной травмирования персонала или повреждения оборудования!

В связи с постоянной работой по совершенствованию контроллера, повышающей его надежность и улучшающей характеристики, в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

Сокращения, принятые в данном руководстве

В наименованиях параметров, на рисунках, при цифровых значениях и в тексте использованы сокращения и аббревиатуры (см. таблицу 1.1), означающие следующее:

Таблица 1.1 - Сокращения и аббревиатуры

Аббревиатура (символ)	Полное наименование	Значение
PV или X	Process Variable	Измеряемая величина (контролируемый и
		регулируемый параметр)
SP или W	Setpoint	Заданная точка (задание регулятору)
T, t	Time	Время, интервал времени
Al	Analogue Input	Аналоговый ввод
DI	Discrete Input	Дискретный ввод
AO	Analogue Output	Аналоговый вывод
DO	Discrete Output	Дискретный вывод
CP	Средний	Средний контакт дискретного выхода
НО	Нормально открытый	Нормально открытый контакт дискретного выхода

1 Описание контроллера

1.1 Назначение и общие характеристики

МИК-53Н – это компактный малоканальный многофункциональный микропроцессорный контроллер, предназначенный для автоматического регулирования и логического управления технологическими процессами. Он предназначен для применения в электротехнической, энергетической, химической, металлургической, пищевой, цементной, стекольной и других отраслях промышленности.

Контроллер МИК-53Н позволяет вести локальное, каскадное, программное, супервизорное, многосвязное регулирование.

Архитектура контроллера обеспечивает возможность вручную или автоматически включать, отключать, переключать и реконфигурировать контуры регулирования, причем все эти операции выполняются безударно независимо от сложности структуры управления. В сочетании с обработкой аналоговых сигналов контроллер МИК-53Н позволяет выполнять также логические преобразования сигналов и вырабатывать импульсные или дискретные команды управления. Логические функциональные блоки формируют логическую программу шагового управления с заданием контрольного времени на каждом шаге.

МИК-53Н содержит средства оперативного управления, расположенные на лицевой панели контроллера. Эти средства позволяют вручную изменять режимы работы, устанавливать задание, управлять ходом выполнения программы, вручную управлять исполнительными устройствами, контролировать сигналы и индицировать ошибки. Стандартные аналоговые и дискретные датчики и исполнительные устройства

подключаются к контроллеру МИК-53H с помощью индивидуальных кабельных связей. Внутри контроллера сигналы обрабатываются в цифровой форме.

Контроллеры МИК-53Н могут объединяться в локальную управляющую сеть шинной конфигурации. Для такого объединения никаких дополнительных устройств не требуется. Через сеть контроллеры могут обмениваться информацией в цифровой форме.

Программирование контроллера выполняется с помощью клавиш передней панели или по интерфейсу с помощью специального программного обеспечения - визуального редактора FBD-программ АЛЬФА. Программный пакет редактор FBD-программ АЛЬФА распространяется <u>бесплатно</u>. Он доступен на нашем сайте в интернете: _________.

Система программирования реализована в соответствии с требованиями стандарта Международной Электротехнической Комиссии (МЭК) IEC 1131-3 и предназначена для разработки прикладного программного обеспечения сбора данных и управления технологическими процессами, выполняемыми на программируемых контроллерах.

В качестве языка программирования в системе реализован язык функциональных блоковых диаграмм Function Block Diagram (FBD), предоставляющий пользователю механизм объектного визуального программирования.

Процесс программирования сводится к тому, что выбором из библиотеки функциональных блоков, зашитой в постоянной памяти, вызываются нужные их них и объединяются в систему заданной конфигурации и в которых устанавливаются требуемые параметры настройки.

С помощью встроенной энергонезависимой памяти программа пользователя сохраняется при отключении питания.

Контроллер МИК-53Н представляет собой комплекс технических средств. В его состав входит центральный микропроцессорный блок и набор разъемов для подключения цепей ввода-вывода. Центральный блок преобразует аналоговую и дискретную информацию в цифровую форму, ведет обработку цифровой информации и вырабатывает управляющие воздействия.

Контроллер МИК-53H - это проектно-компонуемое изделие, которое позволяет пользователю выбрать нужный комплект модулей расширения (УСО – устройства связи с объектом) согласно числу и виду входных и выходных сигналов. Его состав и ряд параметров определяются потребителем и указываются в заказе. К одному контроллеру МИК-53H подключается только один модуль расширения.

В контроллер МИК-53Н встроены развитые средства самодиагностики, сигнализации и идентификации неисправностей, в том числе при отказе аппаратуры, выходе сигналов за допустимые границы, сбое в ОЗУ, нарушении обмена по сети и т.п.

1.2 Основные свойства

В контроллере МИК-53Н предусмотрено:

- До 9 независимых контуров регулирования, каждый из которых может быть локальным или каскадным, с аналоговым или импульсным выходом, с ручным, программным (в том числе многопрограммным) или супервизорным задатчиком.
- Более 80 типов зашитых в ПЗУ функциональных блоков непрерывной и дискретной обработки информации, включая функциональные блоки ПИД регулирования, функциональные блоки математических, динамических, нелинейных, аналого-дискретных и логических преобразований.
- До 98 используемых блоков со свободным их заполнением любыми функциональными блоками из библиотеки и свободным конфигурированием между собой и с входами-выходами контроллера. Ручная установка или автоподстройка любых свойств, параметров и коэффициентов в любых функциональных блоках.
- Изменение режимов управления, включение/отключение, переключение и реконфигурация контуров регулирования любой степени сложности.
- Оперативное управление контурами регулирования с помощью клавиш лицевой панели, 2-х четырехразрядных, и одного трехразрядного цифровых индикаторов и ряда светодиодов, позволяющих менять режимы, устанавливать задание, управлять исполнительными механизмами, контролировать сигналы, индицировать аварийные ситуации. При программном регулировании средства оперативного управления позволяют выбирать требуемую программу, пускать, останавливать, и сбрасывать программу, переходить к следующему участку программы, а также контролировать ход выполнения программы.

• Объединение до 31 контроллера в локальную управляющую сеть, причем в эту сеть могут включаться также и другие модели контроллеров или другие устройства.

1.3 Обозначение контроллера при заказе и комплект поставки

1.3.1 Контроллер обозначается следующим образом:

Обозначение при заказе: МИК-53H-AA-B-CC-D-U-EEEE-F,

где

АА - код модели контроллера:

- 21 2 аналоговых входа, 16 дискретных входов, 8 дискретных выходов.
- 22 2 аналоговых входа, 8 дискретных входов, 16 дискретных выходов,
- 23 2 аналоговых входа, 1 аналоговый выход, 16 дискретных входов, 8 дискретных выходов,
- 24 2 аналоговых входа, 1 аналоговый выход, 8 дискретных входов, 16 дискретных выходов,
- 31 24 дискретных входа, 8 дискретных выходов,
- 32 16 дискретных входов, 16 дискретных выходов,
- 33 8 дискретных входов, 24 дискретных выхода,
- 41 4 аналоговых входа, 16 дискретных входов, 8 дискретных выходов,
- 42 4 аналоговых входа, 8 дискретных входов, 16 дискретных релейных выходов.

В - тип дискретных выходных сигналов:

- Т транзисторные выходные сигналы,
- Р релейные выходные сигналы.

СС - код модели модуля расширения:

00 - модуль расширения отсутствует.

D - тип дисплеев:

1 – семисегментная индикация.

U - напряжение питания:

- 220 220 В переменного тока,
- 24 24 B постоянного тока.

ЕЕЕЕ – соответственно код 1-го, 2-го, 3-го и 4-го входных унифицированных аналоговых сигналов:

- 0 аналоговые входы отсутствуют (для моделей 21-24 указывать EE00, для моделей 31,32,33 "0000").
 - 1 0-5 мА,
 - 2 0-20 mA,
 - 3 4-20 мА,
 - 4 0-10 B.

F – код выходного унифицированного аналогового сигнала (для моделей МИК-53H-23, МИК-53H-24; для остальных моделей указывать "0"):

- 0 аналоговый выход отсутствует,
- 1 0-5 мА,
- 2 0-20 mA,
- 3 4-20 мА,
- 4 0-10 B.
- 1.3.2 Комплект поставки программируемого контроллера МИК-53Н приведен в таблице 1.3.

Таблица 1.3 - Комплект поставки контроллера МИК-53Н

Обозначение	Наименование	Количество
ПРМК.421457.062	Контроллер микропроцессорный МИК-53Н	1
ПРМК.421457.062 ПС	Паспорт	1
ПРМК.421457.062 РЭ1 ПРМК.421457.005 РЭ2	Руководство по эксплуатации	1*
232-209/026-000	Розетка угловая	4
232-204/026-000	Розетка угловая	1
232-203/026-000	Розетка угловая	1**
734-203	Розетка прямая	1***
231-131	Рычаг монтажный	1
734-230	Рычаг монтажный	1***

^{* - 1} экз. на любое количество изделий данного типа при поставке в один адрес

^{** -} при условии заказа контроллера с напряжением питания 220 В переменного тока

^{*** -} при условии заказа контроллера с напряжением питания 24 В постоянного тока

1.4 Технические характеристики контроллера

1.4.1 Количество входов/выходов контроллера

Таблица 1.4.1 – Количество входов/выходов контроллера МИК-53Н

Код контроллера	Системный код модели	Аналоговый вход	Аналоговый выход	Дискретный вход	Дискретный выход
МИК-53H-21	31	2	-	16	8
МИК-53Н-22	33	2	-	8	16
МИК-53H-23	31	2	1	16	8
МИК-53H-24	33	2	1	8	16
МИК-53H-31	31	•	-	24	8
МИК-53H-32	32	•	-	16	16
МИК-53H-33	33	•	-	8	24
МИК-53H-41	31	4	-	16	8
МИК-53Н-42	33	4	-	8	16

Примечание. "-" – вход отсутствует

1.4.2 Характеристики входов-выходов

1.4.2.1 Аналоговые входные сигналы

Таблица 1.4.2 - Технические характеристики аналоговых входных сигналов

Наименование характеристики	Значение характеристики
Количество аналоговых входов	До 4 (см. табл. 1.4.1)
Тип входного аналогового сигнала	унифицированный по ГОСТ26.011-80: 0-5 мА, Rвx=400 Ом 0-20 мА, Rвx=100 Ом 4-20 мА. Rвx=100 Ом
	0-10 В,
Разрешающая способность АЦП	≤ 0.0015% (16 разрядов)
Точность индикации	≤ 0.01 %
Предел допустимой приведенной погрешности измерения	0.2 %
Влияние температуры окружающей среды	≤ 0.02 %/°C
Период измерения, не более	0.1 c
Гальваническое разделение цепей	Аналоговые входы гальванически изолированы друг от друга, от выходных и других входных цепей и цепей питания. Напряжение гальванической развязки не менее 500 В

1.4.2.2 Аналоговый выходной сигнал

Таблица 1.4.3 - Технические характеристики аналоговых выходных сигналов

Наименование характеристики	Значение характеристики
Количество аналоговых выходов	1 (см. табл. 1.4.1)
Тип выходного аналогового сигнала	унифицированный по ГОСТ26.011-80: 0-5 мА, Rн ≤ 2000 Ом 0-20 мА, 4-20 мА, Rн ≤ 500 Ом
	0-10B, Rh ≥ 2000 Om
Разрешающая способность ЦАП для выхода	≤ 0.024 % (12 разрядов)
Предел допускаемой основной приведенной погрешности формирования выходного сигнала после калибровки	≤ 0.4 %
Зависимость выходного сигнала от сопротивления нагрузки	≤ 0.1 %
Влияние температуры окружающей среды	≤ 0.04 %/°C
Гальваническое разделение цепей	Аналоговые выходы гальванически изолированы другот друга, от входных и других выходных цепей и цепей питания. Напряжение гальванической развязки не менее 500 В.

1.4.2.3 Дискретные входные сигналы

Таблица 1.4.4 - Технические характеристики дискретных входных сигналов

Наименование характеристики	Значение характеристики
Количество дискретных входов	До 24 (см. табл. 1.4.1)
Сигнал логического "0" – состояние ОТКЛЮЧЕНО	0-7 B
Сигнал логической "1" – состояние ВКЛЮЧЕНО	18-30 B
Максимальная частота следования импульсов	≤ 5 Гц
Минимальная длительность импульса	100 мс
Входной ток (потребление по входу)	≤ 10 mA
Гальваническое разделение цепей	Дискретные входы соединены в группы из восьми входов (см. раздел 8) и гальванически изолированы друг от друга, от выходных и других входных цепей и цепей
	питания. Напряжение гальванической развязки не менее 500 В.

1.4.2.4 Дискретные выходные сигналы

1.4.2.4.1 Транзисторный выход

Таблица 1.4.5 - Технические характеристики дискретных транзисторных выходных сигналов

Наименование характеристики	Значение характеристики
Количество дискретных выходов	До 24 (см. табл. 1.4.1)
Тип выхода	Открытый коллектор (NPN транзистора)
Максимальное напряжение коммутации	40 В постоянного тока
Максимальный ток нагрузки каждого выхода	100 мА
Гальваническое разделение цепей	Дискретные выходы соединены в группы из восьми выходов (см. раздел 8) и гальванически изолированы от входов, других выходов и остальных цепей. Напряжение гальванической развязки не менее 500 В.
Сигнал логического "0" Сигнал логической "1"	Разомкнутое состояние транзисторного ключа Замкнутое состояние транзисторного ключа.

1.4.2.4.2 Релейный выход

Таблица 1.4.6 - Технические характеристики дискретных релейных выходных сигналов

Наименование характеристики	Значение характеристики
Количество дискретных выходов	До 24 (см. табл. 1.4.1)
Тип выхода	Замыкающие контакты реле
Максимальное напряжение коммутации: - переменного тока - постоянного тока	250 B 30 B
Максимальный ток нагрузки каждого выхода Гальваническое разделение цепей	5 А Дискретные выходы соединены в группы из восьми выходов (см. раздел 8) и гальванически изолированы от входов, других выходов и остальных цепей. Напряжение гальванической развязки не менее 500 В.
Сигнал логического "0" Сигнал логической "1" Вид нагрузки	Разомкнутое состояние контактов реле. Замкнутое состояние контактов реле. Активная, индуктивная

1.4.3 Общие функциональные параметры

Таблица 1.4.7 – Общие функциональные параметры

Техническая характеристика	Значение
Максимальное число функциональных блоков в программе	98
Число функциональных блоков в библиотеке	Более 80
Выполнение программы пользователя, не более	0.1 c
Погрешность цифровой обработки информации:	
суммирование, вычитание	0.001%
умножение, деление	0.001%
извлечение квадратного корня	0.01%
Погрешность часов реального времени за сутки, не более	3 сек

1.4.4 Функциональные параметры регуляторов

Таблица 1.4.8 – Функциональные параметры регуляторов

Техническая характеристика	Значение
Максимальное число независимых контуров	9
Вид регулятора в каждом контуре	Локальный аналоговый, локальный импульсный, каскадный аналоговый, каскадный импульсный
Режим работы каждого контура	Локальный, каскадный, дистанционный, ручной
Вид задания в каждом контуре	Ручное, программное, внешнее (супервизорное)
Закон регулирования в каждом контуре	ПИД, ПИ, ПД, П, Трехпозиционное, двухпозиционное
Контролируемые параметры	Задание, вход, рассогласование, выход, значение произвольного параметра
Параметры настройки	См. паспорт соответствующего функционального блока
Параметры руч	іного задатчика:
Способ установки	Больше-меньше
Дискретность установки	0.01%
Время изменения на 100%, не более	16 c
Вид балансировки	Динамическая, статистическая
Разрешающая способность контроля положения исполнительного механизма по цифровому индикатору "Выход"	0.1%

1.4.5 Функциональные параметры программных задатчиков

Таблица 1.4.9 – Функциональные параметры программных задатчиков

Техническая характеристика	Значение
Максимальное число участков одной программы	48
Выполнение программы	Однократное, многократное, циклическое
Максимальное число многократного повторения программы	99
Команды управления программой	Выбор программы, пуск, стоп, сброс, переход к следующему участку
Состояния программы	Пуск, стоп, сброс, конец программы
Контролируемые параметры	Номер программы; номер повторения; номер участка; время, оставшееся до окончания участка; состояние программы
Управление	е выходами:
Способ управления в ручном режиме	Больше-меньше
Время изменения аналогового сигнала в ручном режиме	Не более 16 сек

1.4.6 Последовательный интерфейс RS-485

Таблица 1.4.10 – Технические характеристики последовательного интерфейса RS-485

Техническая характеристика	Значение	
Тип канала	Асинхронный полудуплексный	
Топология сети	"Общая шина"	
Конфигурации сети	Многоточечная	
Интерфейс	RS-485	
Протокол связи	ModBus RTU	
Число контроллеров (приемопередатчиков) в сети	До 31 на одном сегменте сети	
Тип приемопередатчиков	Дифференциальный, потенциальный	
Скорость передачи данных (устанавливается пользователем)	2,4; 4,8; 9,6; 14,4; 19,2; 28,8; 38,4; 57,6; 115,2; 230,4; 460,8; 921,6 Кбит/с	
Гальваническая развязка	Интерфейс гальванически изолирован от входов- выходов и остальных цепей	
Длина линии связи сети	До 1.2 км в зависимости от установленной скорости передачи данных	
Тип линий связи	Витая пара, экранированная витая пара	
Назначение интерфейса	Для конфигурирования прибора, для использования в качестве удаленного контроллера при работе в современных сетях управления и сбора информации (приема-передачи команд и данных), для междуконтроллерного обмена	

1.4.7 Электрические данные

Таблица 1.4.11 – Технические характеристики электропитания

Техническая характеристика	Значение
Электропитание (подключение к сети):	
- постоянного тока	= от 18 В до 36 В
- переменного тока	~ от 100 В до 242 В, 50 Гц
Потребляемая мощность	Не более 4.4 B·A
Ток потребления по питанию 24 В	Не более 350 мА

1.4.8 Корпус. Условия эксплуатации

Таблица 1.4.12 – Условия эксплуатации контроллера МИК-53Н

Техническая характеристика	Значение	
Габаритные размеры контроллера	110 мм х 160 мм х 58 мм	
Тип корпуса	Корпус для DIN-реечного монтажа	
Крепление корпуса	В электрощитах	
Рабочая температура	от минус 40 °C до плюс 70 °C	
Температура хранения (предельная)	от минус 40 °C до плюс 70 °C	
Климатическое исполнение	исполнение группы 4 согласно ГОСТ 22261, но для	
	работы при температуре от минус 40 °C до 70 °C	
Атмосферное давление	От 85 до 106,7 кПа	
Вибрация	исполнение 5 согласно ГОСТ 22261	
Помещение	Закрытое, взрыво- пожаробезопасное.	
	Воздух в помещении не должен содержать пыли и	
	примеси агрессивных паров и газов, вызывающих	
	коррозию (в частности: газов, содержащих сернистые	
	соединения или аммиак).	
Положение при монтаже	Любое	
Степень защиты	IP30 по ГОСТ 14254-96	
Вес контроллера, не более	0.5 кг	

2 Функциональные возможности

2.1 Архитектура контроллера

2.1.1 Базовые архитектурные элементы

Архитектура контроллера МИК-53H описывает информационную организацию контроллера и характеризует его как звено системы управления.

Часть архитектурных элементов структуры реализована аппаратно, часть - программно. Все программное обеспечение, формирующее архитектуру, зашито в постоянном запоминающем устройстве и пользователю недоступно. Независимо от того, как реализованы элементы архитектуры — аппаратно или программно — пользователь может представлять контроллер как изделие, в котором все элементы реально существуют в виде отдельных узлов.

В состав архитектуры контроллера входит (см. рис. 2.1):

- аппаратура ввода-вывода информации;
- аппаратура оперативного управления и настройки;
- аппаратура интерфейсного канала;
- функциональные блоки;
- библиотека функциональных блоков.

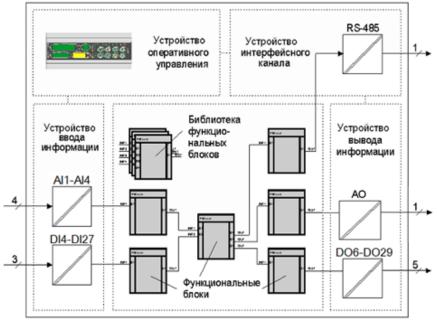


Рисунок 2.1 - Архитектура контроллера МИК-53Н

2.1.2 Внешние сигналы и аппаратура ввода-вывода

Контроллер рассчитан на прием и выдачу двух видов сигналов:

- аналоговых:
- дискретных.

Формирование импульсных сигналов на выходе импульсного регулятора выполняется программно, и эти сигналы поступают на исполнительные механизмы через дискретные выходы контроллера. Аппаратура ввода (входные УСО) преобразуют аналоговые и дискретные сигналы, поступающие на вход контролера, в цифровую форму. Аппаратура вывода (выходные УСО) осуществляет обратное преобразование.

Внешние цепи подключаются к контролеру через внешний разъем и разъемы для подключения цепей ввода-вывода.

Все аналоговые и дискретные входы и выходы контроллера полностью универсальны в таком смысле, что в исходном состоянии они не «привязаны» к каким-либо функциям контроллера. Такая привязка осуществляется пользователем и реализуется в процессе программирования.

2.1.3 Аппаратура оперативного управления и настройки

Аппаратура оперативного управления (лицевая панель) рассчитана на оператора-технолога и оператора-наладчика. Лицевая панель имеет набор клавиш, светодиодных и цифровых индикаторов, с помощью которых оператор-технолог «ведет» технологический процесс: контролирует его параметры, изменяет режимы управления, меняет уставки, пускает, останавливает и сбрасывает программу и т. д.

С помощью лицевой панели можно программировать контроллер, выполнять настройку его параметров, а также контролировать значения переменных во внутренних точках структуры.

В общем виде лицевую панель (пульт настройки) можно рассматривать как интерфейс с человеком.

2.1.4 Аппаратура интерфейсного канала

В контроллере имеется интерфейсный канал последовательной связи. Этот канал имеет приемопередатчик, преобразующий входной поток последовательных бит информации в цифровую информацию, представленную в виде байтов (т. е. преобразующий последовательный код в параллельный), а также осуществляющий обратное преобразование.

Принимаемые и передаваемые сообщения хоть и являются цифровыми, но они могут «представлять» любые сигналы, обрабатываемые контроллером: аналоговые, временные, числовые и т.д.

Все сигналы передаются через интерфейс последовательно, но скорость их передачи достаточно велика для того, чтобы для процессов большого и среднего быстродействия можно было считать, что все сигналы передаются одновременно.

2.2 Функциональные блоковые диаграммы (FBD)

2.2.1 Функциональные блоки

В исходном состоянии функциональные блоки отсутствуют, и никакие функции по обработке сигналов контроллером не выполняются.

Реализованные программно функциональные блоки образуют область управления контроллера.

Функциональный блок является элементарным звеном FBD-программ.

Система программирования реализована в соответствии с требованиями стандарта Международной Электротехнической Комиссии (МЭК) IEC 1131-3 и предназначена для разработки программного обеспечения, предназначенного для сбора данных и управления технологическими процессами, выполняемыми на программируемых контроллерах.

В качестве языка программирования в системе реализован язык функциональных блоковых диаграмм Function Block Diagram (FBD), предоставляющий пользователю механизм объектного визуального программирования.

2.2.2 Библиотека функциональных блоков

Контроллер содержит обширную библиотеку функциональных блоков, достаточную для того, чтобы решать сравнительно сложные задачи автоматического регулирования и логико-программного управления. Помимо функциональных блоков автоматического регулирования и логико-программного управления в библиотеке имеется большой набор функциональных блоков, выполняющих динамические, статические, математические, логические и аналого-дискретные преобразования сигналов.

Часть библиотечных функциональных блоков выполняет особую задачу: она связывает аппаратуру контроллера с основной массой функциональных блоков. К этим «связным» функциональным блокам относятся:

- функциональные блоки ввода и вывода аналоговых и дискретных сигналов,
- функциональные блоки обслуживания лицевой панели,
- функциональные блоки приема и передачи сигналов через интерфейсный канал.

Аппаратные элементы структуры контроллера (входные и выходные УСО, лицевая панель, интерфейсный канал) начинают выполнять свои функции лишь после того, как будут использованы какиелибо соответствующие функциональные блоки.

Более подробно библиотека и описание функциональных блоков представлены в руководстве *ПРМК.421457.005 <u>РЭ2</u>*.

2.3 Общие свойства функциональных блоков

2.3.1 Входы-выходы и параметры функциональных блоков

В общем случае функциональный блок имеет свои входы, выходы, параметры настройки и функциональное ядро.

Функциональный блок - это графическое изображение вызова одной из функций. Графически каждый функциональный блок можно представить в виде прямоугольника (см. рис. 2.2), внутри которого имеется обозначение функции, выполняемой блоком. Входы функционального блока соединяются связями с другими блоками. Один или несколько функциональных блоков соединенные связями между собой, образуют программу на языке FBD.

Функциональным блокам в программе пользователя присваиваются **порядковые номера**, которые идентифицируют блок в системе, а также определяют очередность выполнения блоков в программе.

Далее по тексту руководства по эксплуатации используется единая система условных обозначений функциональных блоков (порядковых номеров, типов, модификатора) в программе пользователя:

08-SUMM(13)-04, где:

08 - порядковый номер функционального блока в программе пользователя,

SUMM(13) - условное обозначение типа (функции блока) и библиотечный номер блока,

04 - модификатор количества входов (число входов)

(указывается для функциональных блоков, в которых имеется модификатор,

и не указывается для блоков, в которых модификатор отсутствует).

Каждый блок в зависимости от выполняемой им функции имеет определенное количество входов и выходов. Входы всегда расположены слева, а выходы - справа.

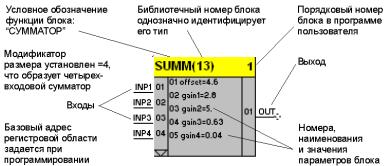


Рисунок 2.2 - Функциональный блок сумматора

Параметры настройки функционального блока задают различные свойства, например, номер входного сигнала, коэффициент усиления, масштабный коэффициент, смещение сигнала, постоянная времени фильтра, максимальные и минимальные границы изменения какого-либо параметра и т.п.

В результате выполнения функциональным блоком соответствующей функции на его выходах формируются сигналы, которые определяются состоянием входных сигналов и настроечных параметров.

Под базовым адресом регистровой памяти подразумевается память, выделена под каждое свойство функциональных блоков. К примеру, функциональный блок SUMM(13), изображенный на рисунке 2.2, занимает ячейки памяти 01,02...05. Если в программе есть еще один идентичный блок, как изображенный на рисунке 2.2 и его порядковый номер 2, то уже его свойства будут занимать ячейки с 06 по 10 и т д. Блоки без свойств не вносятся в регистровую область.

Так, например, на рис.2.2, на вход сумматора поступает 4 сигнала. Эти сигналы суммируются с учетом соответствующих масштабных коэффициентов, которые указаны в параметрах, добавляется смещение и результирующий сигнал поступает на выход функционального блока.

Таким образом, на выходе функционального блока сумматора формируется сигнал, который зависит от входных сигналов и установленных параметров и для примера на рис. 2.2 может быть представлен математической зависимостью:

$$OUT = 2.8*INP1 + 5*INP2 + 0.63*INP3 + 0.04*INP4 + 4.6$$

Число входов и выходов функционального блока не фиксировано и определяется видом функционального блока. Ни в одном функциональном блоке число ВХОДОВ не превышает 12, число ВЫХОДОВ также не превышает 12.

В частном случае функциональный блок может не иметь входов или выходов. Выше речь шла о доступных или явных входах и выходах функционального блока, т. е. тех входах-выходах, которые можно свободно конфигурировать – подключать к другим функциональным блокам.

Некоторые функциональные блоки имеют неявные входы и (или) выходы, имеющие специальное назначение и не доступные для конфигурирования. К таким функциональным блокам относится вся группа связных функциональных блоков: функциональные блоки ввода-вывода, функциональные блоки приемопередачи, функциональные блоки оперативного управления, функциональные блоки пользовательской панели индикации и управления.

Как только один из таких функциональных блоков используется, его неявные входы и (или) выходы автоматически соединяются с аппаратурой, обслуживать которую призван данный функциональный блок.

Например, как только будет использован функциональный блок аналогового ввода, неявные входа этого функционального блока автоматически соединятся с АЦП соответствующего канала, обрабатывающим сигналы. А на выходах этого функционального блока будут сформированы общедоступные сигналы, эквивалентные сигналам, поступающим на аналоговые входы контроллера.

Поэтому, если на вход какого-либо функционального блока нужно подать аналоговый сигнал, этот вход при программировании следует соединить с соответствующим выходом (масштабированным или не масштабированным) функционального блока аналогового ввода AIN (рис. 2.3).

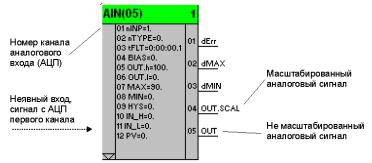


Рисунок 2.3 - Функциональный блок аналогового ввода с неявными входами

Неявные входы и выходы на графических схемах функциональных блоков не отображаются.

Все входы и параметры функционального блока имеют сквозную нумерацию от 1 до 98. Выходы функционального блока также нумеруются двухзначной десятичной цифрой от 1 до 98.

Если параметры функционального блока являются связанными параметрами, т.е. подключенными к каким-либо выходам других блоков, то их нумерация осуществляется со смещением, равным максимальному номеру входа.

В каждом конкретном функциональном блоке число входов и (или) выходов может быть меньше указанного максимального значения.

Примечание. Для функционального блока дискретного ввода DIN(06) нумерацию необходимо начинать с четвертого номера (установить параметр 01 nINP=4), для функционального блока дискретного вывода – с шестого (установить параметр 01 nINP=6).

Особенности работы прибора с дискретными входами

В контроллере МИК-53Н имеется возможность задействования таймера-счетчика для входов DI4-DI6. При этом сигналы с дискретных входов обрабатываются параллельно как счетными, так и обычными входами процессора (см. рис. 2.4).

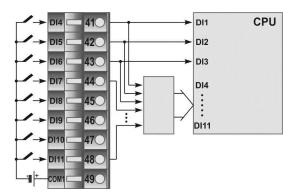


Рисунок 2.4 – Схема обработки сигналов дискретных входов контроллера МИК-53Н

2.3.2 Реквизиты функциональных блоков

В общем случае библиотечный функциональный блок имеет следующие реквизиты:

- библиотечный номер, соответствующий номеру выполняемой функции;
- базовый адрес регистровой области параметров;
- модификатор размера, определяющий, например, количество входов блока и т.п.

Библиотечный номер представляет собой двухзначную десятичную цифру и является основным параметром, характеризующим свойства функционального блока.

В библиотеке контроллера нет ни одного функционального блока, который не имел бы номера, но в диапазоне чисел от 00 до 98 есть номера, которым не соответствует ни один из имеющихся типов функциональных блоков. Такие номера называются «пустыми» и этим номерам условно можно поставить в соответствие понятие «пустого» функционального блока. «Пустой» функциональный блок не имеет входоввыходов, никакой работы не выполняет и не влияет на работу других функциональных блоков, но в памяти занимает определенное место и требует некоторого (небольшого) времени на обслуживание.

Обычно **модификатор** задает число однотипных входов или операций, которые может выполнять один функциональный блок. Модификатор размера также задает дополнительные свойства функционального блока. Например, в сумматоре модификатор размера задает число суммируемых ВХОДОВ, а в программном задатчике – число участков программы и т. п.

Модификатор размера (количества входов) устанавливается на УРОВНЕ 2 программирования функциональных блоков.

Ряд функциональных блоков (например, интегрирования, умножения и т. д.) модификатора не имеет.

Функциональные блоки одного типа с одним и тем же номером функции, используемые в разных блоках, могут иметь индивидуальный модификатор в каждом функциональном блоке.

Наличие модификатора существенно расширяет возможности функциональных блоков. Например, при использовании функционального блока многовходового «И», один блок может иметь четыре входа, а в другом случае три - см. пример на рис. 2.5.

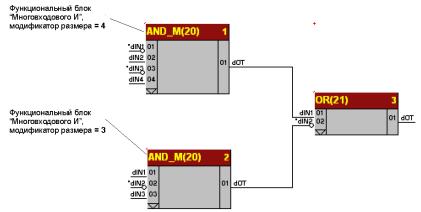


Рисунок 2.5 - Влияние модификатора размера

Базовый адрес регистровой области параметров. Параметры каждого функционального блока должны размещаться в регистровой области друг за другом, по порядку, начиная с адреса 0000, указанного в соответствующем реквизите функционального блока. То есть базовый адрес функционального блока — это номер ячейки регистровой области памяти контроллера, в которой должен размещаться первый параметр этого функционального блока. Базовый адрес регистровой области параметров функционального блока настраивается пользователем в режиме ПРОГРАММИРОВАНИЯ на уровне конфигурирования функционального блока (уровне №2).

2.3.3 Программирование функциональными блоками

При программировании функциональными блоками в большинстве случаев действуют правила:

- функциональным блокам присваиваются порядковые номера, которые идентифицируют блок в системе, а также определяют очередность выполнения блоков в программе;
 - функциональному блоку может быть присвоен любой порядковый номер;
 - в одной программе функциональные блоки одного и того же типа можно использовать многократно;
 - не может быть свободных (неподключенных) входов функционального блока;
- допускаются связи входов и выходов любого типа, т.к. преобразование типов осуществляется автоматически.

Из этих правил имеются следующие исключения:

• для некоторых функциональных блоков имеется ограничение на кратность их использования в пределах одного контроллера. Так, функциональный блок аналогового ввода можно использовать лишь столько раз, сколько аналоговых входов его повторное использование лишено смысла. Аналогичные ограничения (по аналогичным причинам) имеют другие функциональные блоки ввода-вывода информации.

2.3.4 Программная модель функционального блока

Программная модель функционального блока представлена на рис. 2.6.

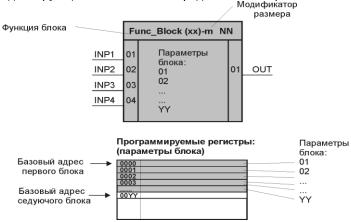


Рисунок 2.6 - Программная модель функционального блока

2.4 Возможности конфигурирования

2.4.1 Задачи конфигурирования

В процессе конфигурирования для каждого входа каждого функционального блока задается источник сигнала (здесь и далее имеются в виду только явные входы и выходы функциональных блоков, неявные входы и выходы имеют фиксированную «приписку» и конфигурированию не подлежат). Все

возможности конфигурирования одинаковы как для входов, так и для параметров, поэтому в дальнейшем между ними не делается различия.

Не может быть свободных (неподключенных) входов функционального блока.

Сигналы, подаваемые на входы, поступают с выходов функциональных блоков. При конфигурации для входов задается номер функционального блока и номер выхода, к которому подключается данный вход.

Указанные конфигурационные возможности позволяют строить управляющие структуры самых различных конфигураций. Так, связи входов с выходами функциональных блоков позволяют выполнять сложную алгоритмическую обработку сигналов. Например, нужно связать 12-е свойство (задание ПИД-регулятора) со вторым аналоговым входом. Для этого на 3 уровне (программирование связей) нужно выбрать номер и выход блока, который нужно связать - в нашем случае 4-й выход 2-го блока, - после этого выбрать номер блока, свойство которого нужно связать (в данном случае 3-й блок) и номер, который формируется как номер свойства, которое должно быть связное + все входа данного функционального блока.

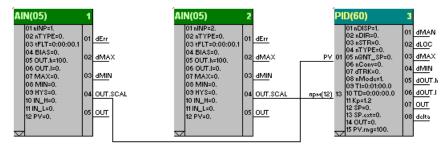


Рисунок 2.7 - Связные параметры

Аналогичная связь параметров функциональных блоков позволяет выполнить автоматическое изменение любого параметра настройки (автоподстройка).

2.4.1.1 Инверсия сигналов

Расширению функциональных возможностей служит еще одна возможность - сигнал на любом входе при необходимости можно инвертировать.

Используется только для дискретных сигналов и обозначает изменение состояния (замену 1 на 0 и 0 на 1) см. рис. 2.5, 2.8.

Возможность инвертирования позволяет управлять инвертированным сигналом, запускать или сбрасывать таймер не передним, а задним фронтом сигнала и т. д.

2.4.2 Правила конфигурирования

Возможности конфигурирования не зависят от функционального блока и определяются следующими правилами (рис. 2.8):

- Не может быть свободных (неподключенных) входов функционального блока.
- Любой дискретный вход функционального блока можно инвертировать (в исходном состоянии инверсия отсутствует).
- К любому входу любого функционального блока можно подключить специальный функциональный блок, который задает сигнал в виде значения (константы или коэффициента).
 - Выходы функционального блока могут оставаться свободными (неподключенными).

На рис. 2.8 представлен пример конфигурирования.

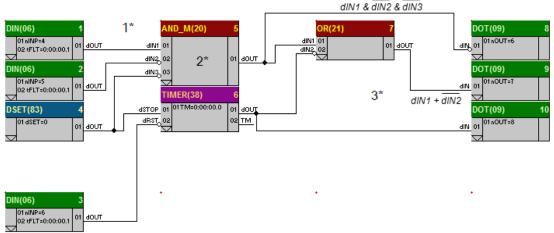


Рисунок 2.8 - Пример конфигурирования

Единая система условных обозначений функциональных блоков: их порядковых номеров в программе пользователя, обозначение типа (функции блока) и библиотечный номер блока, а также значение модификатора размера (количества входов) приводится в разделе 2.3.1.

На рисунке 2.8 представлены различные примеры и варианты конфигурирования:

- 1) показана связь функционального блока многовходового «И» 5-MULTI_AND(20)-03 и функционального блока дискретного входа 01-DIN(06). Для образования данной связи, на уровне конфигурации, вход 01 функционального блока 5-MULTI_AND(20)-03 подключается к выходу 01 функционального блока 01-DIN(06).
- 2) показан вариант конфигурации, при которой два внешних входных дискретных сигнала и один коэффициент (в данном случае роль коэффициента выполняет логическая переменная, установленная функциональным блоком 4-dSET(83) обрабатываются функциональным блоком многовходового логического «И» 5-MULTI_AND(20)-03 в соответствии с зависимостью:

$$dOT = dIN1 \& dIN2 \& dIN3.$$

где: dOT - результат обработки, dIN1, dIN2 - дискретные сигналы, поступающие на вход контроллера, dIN3 - коэффициент, принимающий значения 0 или 1 и устанавливаемый оператором вручную. Для подключения к дискретным входам контроллера используются функциональные блоки ввода дискретных сигналов 01-DIN(06) и 02-DIN(06). Входы 01 и 02 функционального блока многовходового И 5-MULTI_AND(20)-03 подключаются к выходу 01 блока 01-DIN(06) и выходу 01 функционального блока 02-DIN(06), а вход 03 функционального блока многовходового И 5-MULTI_AND(20)-03 подключается к блоку 4-dSET(83) для задания логической переменной.

- 3) Выходной сигнал функционального блока многовходового И 5-MULTI_AND(20)-03 подается на 1-й дискретный выход контроллера, для чего на вход 01 блока дискретного выхода 9-DOT(09) подключен 01 выход блока многовходового И 5-MULTI_AND(20)-03. Сигнал на входе 01 функционального блока дискретного выхода 9-DOT(09) инвертируется.
- 4) На рис.2.7 показана инверсия входов следующих функциональных блоков: Вход 02 и 03 блока 5-MULTI_AND(20)-03, вход 02 блока 6-TIMER(38), вход 02 блока 7-OR(21), вход 01 блока 9-DOT(09).

2.5 Сигналы и параметры

2.5.1 Типы сигналов, параметров и типы данных

Несмотря на то, что входные и выходные сигналы контроллера могут быть только двух видов - аналоговые и дискретные, функциональные блоки рассчитаны на обработку сигналов, имеющие большие разнообразия.

Наличие более разнообразных сигналов связано с двумя обстоятельствами. Во-первых, в составе библиотеки есть функциональные блоки, связанные с отсчетом реального времени (таймеры, программные задатчики и т. п.) и со счетом числа событий (счетчики). Во-вторых, как указывалось в п. 2.3.1, параметры настройки функциональных блоков задаются с помощью сигналов на его настроечных входах, а параметров настройки с точки зрения их формата имеют большое разнообразие.

В табл. 2.1 представлен полный перечень сигналов, обрабатываемых функциональными блоками. В связи с тем, что параметры настройки могут задаваться аналогичными сигналами, поступающими на настроечные входы функциональных блоков, в таблице не делается различия между сигналами и параметрами настройки. В табл. 2.1 приведен максимальный диапазон изменения сигналов. В конкретном функциональном блоке этот диапазон может быть ограничен.

Например, выходной сигнал функционального блока регулирования ограничен установленными уровнями встроенного ограничителя или, например, числовой сигнал, характеризующий номер текущего участка программы, ограничен параметром функционального блока программного задатчика, задающего количество участков, и т. п.

Перечень сигналов, обрабатываемых функциональными блоками, включает следующие типы:

- аналоговый (измеряемые параметры, значение аналоговых входов-выходов, технические единицы, коэффициент, скорость изменения параметра и т.п.);
 - дискретный, импульсный;
 - числовой;
 - временной (уставка времени, длительность импульса).

В контроллере МИК-53Н все описанное выше многообразие типов сигналов и параметров настройки обслуживается общепринятым набором типов данных.

При этом обеспечивается простой интерфейс с базами данных других языков программирования, что способствует унификации и развитию программного обеспечения контроллера. В таблице 2.1 представлен набор типов данных языка, используемых при реализации функциональных блоков.

Таблица 2.1 - Типы данных

Наименование типа	Диапазон изменения*	Объем занимаемой памяти	Количество используемых регистров
Дискретное	0 или 1	2 байта	1 регистр
Целое стандартное	-32768 32767	2 байта	1 регистр
Целое длинное	-2147483648 2147483647	4 байта	2 регистра
Вещественное	-3,4x10 ⁻³⁸ 3,4x10 ⁺³⁸	4 байта	2 регистра

^{*} Примечание. Диапазон изменения типов данных на лицевой панели контроллера ограничен соответственно числами от –9999 до 9999.

Соответствие типов данных, типов сигналов и параметров настройки функциональных блоков приведено в таблице 2.2.

Таблица 2.2 - Соответствие типов данных, типов сигналов и параметров настройки

Сигналы и параметры настройки функциональных блоков	Размерность	Типы данных
1 Аналоговый (измеряемые параметры, значение аналоговых входов-выходов, технические единицы, коэффициент, скорость изменения параметра и т.п.)	% или технические единицы	Вещественный
2 Дискретный, импульсный	0/1	Целое стандартное
3 Числовой	-	Целое стандартное
4 Временной (время, длительность импульса)	часы, минуты, секунды, десятые доли секунд, для индикации: 0 – 99ч 59м (0 – 3599999 – для изменения параметров по сети)*1	Целое длинное

^{*1.} Например если есть значение времени ЧЧ:ММ:СС:Д (часы:минуты:секунды:доли секунд), то значение целого длинного X буде равно: X = Д + 10*СС + 600*ММ + 36000*ЧЧ.

Размерность аналоговых сигналов и параметров, а также скорости их изменения определяется в процессе калибровки контроллера и может быть задана либо в процентах, либо в технических единицах.

Размерность временных параметров задается диапазоном времени конкретного функционального блока (часы, минуты или минуты, секунды соответственно).

В процессе вычислений значения сигналов и параметров контроллера автоматически ограничиваются диапазоном изменения соответствующих типов данных.

При контроле аналоговых сигналов в технических единицах на цифровых индикаторах разрешающая способность индикации не превышает 0,001 единиц (или 0,01%).

Аналоговые сигналы формируются на выходе таких функциональных блоков, как регуляторы, сумматоры, задатчики, интеграторы и т. д. К аналоговым сигналам относятся такие параметры настройки, как пределы срабатывания компаратора, уровень ограничения и т. п. Несмотря на то, что на аналоговых входах и выходах контроллера сигнал меняется в диапазоне 0-100%, на выходе функциональных блоков аналоговый сигнал может изменяться в более широком диапазоне – в диапазоне соответствующих типов данных. Это позволяет, например, складывать два числа, каждое из которых равно 90%, и на выходе сумматора получать правильный результат. Если результат каких-либо вычислений оказывается больше установленного типа данных, то сигнал на выходе функционального блока ограничивается значениями соответствующего типа данных.

Временные сигналы формируются на выходе таймеров, программных задатчиков, одновибраторов и т. п. функциональных блоков. К временным сигналам относятся такие параметры настройки, как постоянные времени, протяженность участка, время выдержки и т. п. В контролере предусмотрены четыре размерности для временных сигналов: десятые доли секунд, секунды, минуты и часы. Конкретная размерность определяется соответствующим типом функционального блока (см. табл. 2.2).

Для временных сигналов минимальный шаг изменения и установки в действительности реализуется, только если этот шаг больше времени цикла, с которым работает контроллер.

Числовые сигналы — это сигналы на выходе счетчика или других функциональных блоках, работа которых связана с отсчетом событий. Числовыми могут быть и параметры настройки, например, число может задать граничное значение сигнала на выводе счетчика, номер этапа, к которому должна перейти логическая программа и т. п.

Дискретные сигналы обычно обрабатываются логическими функциональными блоками и функциональными блоками, связанными с переключением сигналов. Однако дискретными могут быть и параметры настройки. Например, дискретные сигналы в функциональном блоке задания определяют, должна ли выполняться статическая и динамическая балансировка.

Масштабный коэффициент – это параметр настройки ряда функциональных блоков, где требуется масштабирование сигналов. Так, этот коэффициент используется в функциональных блоках аналогового ввода и вывода, суммирования с масштабированием и т. п. Коэффициент пропорциональности используется в основном в функциональных блоках регулирования.

Скорость изменения аналоговых сигналов — это параметр настройки задающий, например, скорость изменения при динамической балансировке или задающей ограничения скорости в функциональном блоке ограничения скорости.

Длительность импульса – это параметр настройки функционального блока импульсного вывода. Этот параметр задает минимальную длительность импульса, формируемого импульсным регулятором. Длительность импульса отсчитывается в десятых долях секунды.

Технические единицы – это параметры настройки функциональных блоков оперативного контроля. С помощью этих параметров задается формат числа, в котором контролируемые параметры (например, параметр, задание, рассогласование и т. д.) выводятся на индикаторы лицевой панели.

2.5.2 Взаимное соответствие сигналов и параметров

При конфигурировании функциональных блоков разнотипность сигналов на соединяемых входах не является препятствием для их соединения. Единственно, что необходимо при этом учитывать - это взаимное соответствие диапазона изменения различных сигналов.

Например, если временной выход таймера связать с аналоговым входом сумматора, то значение на входе сумматора будет определяться согласно соотношению: X = 10*T.

Взаимное соотношение имеется не только между непрерывными сигналами, но и между непрерывными сигналами, с одной стороны, и дискретными с другой. Если, например, вход сумматора связать с выходом логического функционального блока, то при изменении сигнала на выходе последнего с нуля на единицу сигнал на входе сумматора будет дискретно изменяться с 0 на 1 (единиц или %).

Взаимное соответствие различных сигналов на выходах и входах функциональных блоков приведено в табл. 2.3.

Сигнал на входе	Сигнал на выходе блока (источник)			
блока (приемник)	Аналоговый, Х,%	Временной, Т	Числовой, N	Дискретный, D
Аналоговый, Х,%	X = X	X = 10*T	X = N	X = 0, при D = 0 X = 1, при D = 1
Временной, Т	T = целая часть X	T = T	T = 0,1*N	T = 0, при D = 0 T = 0,1, при D = 1
Числовой, N	N = целая часть X	N = 10*T	N = N	N = 0, при D = 0 N = 1, при D = 1
Дискретный, D	D = 1, при X > 0 D = 0, при X < 0	D = 1 при любом Т	D = 1, при N > 0 D = 0, при N < 0	D = D

Таблица 2.3 - Взаимное соответствие сигналов

2.6 Порядок обслуживания функциональных блоков

2.6.1 Цикличность работы

Циклограмма работы контроллера представлена на рисунке 2.9. Время цикла выполнения программы пользователя фиксировано и составляет 0.1 секунды. Вначале обслуживается первый функциональный блок, затем второй и т.д. пока не будет обслужен последний функциональный блок. Когда время в пределах установленного времени цикла истечет, программа вновь перейдет к обслуживанию первого функционального блока.

Сеанс сетевого обмена с верхним уровнем условно показан в цикле контроллера. На самом деле сетевой обмен носит случайный характер по отношению к циклу контроллера.

Рисунок 2.9 - Циклограмма работы контроллера

Общее время, затрачиваемое на обслуживание функциональных блоков $T_{\Phi E}$ и интерфейсного канала T_{NH} , должно быть меньше времени цикла, равного 0.1 сек:

 $T_{\Phi B}$ + T_{NH} < 0,1 сек

2.6.2 Задержка обслуживания функциональных блоков

В каждом цикле функциональный блок получает на свои входы сигналы, вычисленные в предыдущем цикле функциональными блоками, к которым данный функциональный блок подключен по конфигурации.

Цикличность обслуживания функциональных блоков приводит к тому, что задержка в обработке сигналов зависит от порядка программирования соединенных между собой функциональных блоков.

Поэтому, например, в схеме рис. 2.10a общая задержка обработки составляет один цикл, а в схеме рис. 2.10б – два цикла.

Это обстоятельство следует учитывать при программировании функциональных блоков.

Общая рекомендация: для минимизации задержки желательно, чтобы функциональный блокисточник имел меньший номер, чем функциональный блок-приемник (величина этой разницы значения не имеет).

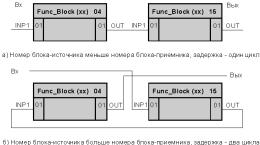


Рисунок 2.9 - Задержка обслуживания

3 Сетевая архитектура

3.1 Общее описание сети

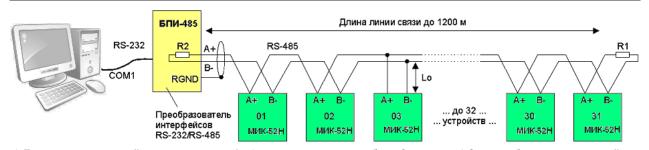
Контроллер МИК-53Н имеет интерфейсный канал последовательной связи, с помощью которого контроллеры могут объединяться в локальную или распределенную управляющую сеть. В сети контроллеры могут обмениваться информацией, как с компьютером, так и между собой.

Физическая организация сети представлена в разделе 3.2.

Логическая организация сети представлена в разделе 3.3 и имеет следующие возможности сетевого обмена информацией:

- 1) обмен информацией между контроллерами (компьютер является диспетчером сетевого обмена),
- 2) обмен информацией между контроллерами и компьютером,
- 3) комбинированная организация обмена, объединяющая все преимущества двух первых способов сетевого обмена.

3.2 Физическая организация сети


Контроллеры в сети связываются друг с другом с помощью витой пары проводов. Длина линии связи может достигать 1200 м (на одном сегменте сети) в зависимости от установленной скорости передачи данных. Для увеличения длины линии связи, а также количества сегментов используют магистральные усилители.

Сеть имеет многоточечную конфигурацию и шинную топологию. Для построения сети контроллеров (до 31), предназначенных для обмена информацией с компьютером, необходимо дополнительное устройство, которое используется для преобразования интерфейсов USB в RS-485 - БПИ-52 (RS-232 в RS-485 - БПИ-485. Ethernet в RS485 – SDS-485).

Если контролеры размещаются недалеко друг от друга (например, в пределах одного помещения), экранировать провода не требуется. При значительных расстояниях между контроллерами и наличии помех на линии предпочтительно использовать экранированную витую пару.

К интерфейсным входам контроллеров, расположенным в крайних точках соединительной линии, необходимо подключить два терминальных резистора сопротивлением 120 Ом (R1 и R2). Подключение резисторов к контроллерам № 01-30 не требуется. Подключение терминальных резисторов в блоке преобразования интерфейсов БПИ-52 (БПИ-485, SDS-485) – см. руководстве по эксплуатации на БПИ-52 (БПИ-485, SDS-485). Подключение терминальних резисторов в контроллерах МИК-53H - см. рисунок 3.1.

Структурная схема подключения интерфейсных цепей показана на рис. 3.1.

 $^{^*}$ Длина ответвлений от линии связи ${f L}_0$ (при указанном способе подключения) должна быть наименьшей.

Рисунок 3.1 - Структурная схема подключения интерфейсных цепей

3.3 Логическая организация сети

3.3.1 Сетевая адресация контроллеров

Каждому контроллеру МИК-53H, подключенному к сети, присваивается уникальный логический номер - сетевой адрес или номер прибора в сети. Этот номер устанавливается в процессе программирования на уровне конфигурации в процедуре «системные параметры» (см. раздел 5).

Порядок сетевых адресов в сети никак не связан с физическим порядком включения контроллеров. Сетевые адреса могут устанавливаться в любой последовательности или иметь пропуски.

При установке сетевых адресов должны выполняться следующие правила:

- значение сетевого адреса устанавливается в пределах 0-255:
- контроллер, который участвует в обмене, не должен иметь сетевой адрес, равный 0. При N=0 контроллер программно отключен от сети, и не реагирует ни на какие запросы внешних абонентов, но при этом целостность сети сохраняется:
- максимальное число контроллеров, объединяемых одним сегментом сети, не должно превышать 31. При использовании магистральных усилителей количество контроллеров не должно превышать 250;
 - в одной сети не должно быть двух или более контроллеров, имеющих одинаковый сетевой адрес.

3.3.2 Возможности обмена информацией между контроллерами

Обмен информацией между контроллерами осуществляется на уровне выходов и/или параметров функциональных блоков.

Инициализацию обмена информацией между контроллерами производит мастер-устройство сети – компьютер или другой контроллер, посылая в сеть специальную широковещательную команду о начале сетевого обмена. Компьютер (или другой контроллер), являясь диспетчером сетевого обмена, проводит синхронизацию и контроль над обменом по сети. Контроллер (диспетчер сетевого обмена) должен использовать функциональный блок LAN SV(1).

Физическая организация сети представлена в разделе 3.2.

При связи функциональных блоков через сеть имеется ряд особенностей:

- Непосредственно связывать функциональные блоки через сеть нельзя для такой связи используются два специальных функциональных блока: блок интерфейсного вывода LAN_OUT(04) и блок интерфейсного ввода LAN IN(03).
- Если выходные сигналы каких-либо функциональных блоков должны передаваться в другие контроллеры, соответствующие выходы функциональных блоков по стандартной процедуре конфигурирования подключаются к входам функционального блока интерфейсного вывода LAN_OUT(04).
- Если какие-либо функциональные блоки одного контроллера должны принимать сигналы от другого контроллера, их входы по стандартной конфигурации соединяются с выходами блока интерфейсного ввода LAN_IN(03).
- Один функциональный блок интерфейсного ввода LAN_IN(03) организует связь только с одним функциональным блоком интерфейсного вывода LAN_OUT(04) другого контроллера. Если данному контроллеру необходимо связаться с несколькими контроллерами, в нем необходимо запрограммировать несколько функциональных блоков интерфейсного ввода LAN IN(03).
- В функциональном блоке интерфейсного ввода LAN_IN(03) устанавливается сетевой адрес контроллера-источника, т.е. того контроллера, от которого будут получены данные.
- В каждом контроллере может устанавливаться любое число функциональных блоков интерфейсного ввода-вывода. Каждый контроллер может передавать в сеть произвольное количество сигналов.

В качестве примера на рис. 3.2 показана связь двух контроллеров, имеющих сетевые адреса 05 и 11.

При данной конфигурации:

- 1) Вход 01 блока аналогового выхода 5-AOT(08) контроллера №1 через сеть подключен к выходу 01 блока суммирования 01-SUMM(13)-02 контроллера №2.
- 2) Вход 01 блока логического ИЛИ 6-OR(21) контроллера №1 через сеть подключен к выходу 01 блока логического И 2-AND(19) контроллера №2.

Более подробно библиотека и описание функциональных блоков, в том числе блоков интерфейсного вывода LAN_OUT(04) и интерфейсного ввода LAN_IN(03) представлены в руководстве по эксплуатации $\Pi PMK.421457.005 \ \underline{P32}$.

Рисунок 3.2 - Связь двух контроллеров через функциональные блоки интерфейсного ввода-вывода

3.3.3 Возможности обмена информацией между контроллерами и компьютером

Инициализацию обмена информацией между контроллерами производит мастер-устройство сети - компьютер. В сети возможна связь между любым контроллером и компьютером.

Физическая организация сети представлена в разделе 3.2.

Компьютер может взаимодействовать с контроллером на следующих уровнях:

- на уровне входов-выходов функционального блока,
- на уровне программируемых регистров параметров функционального блока (см. модель блока рис. 2.5).

При обмене информацией с функциональным блоком указывается номер блока, а при обмене с программируемыми регистрами - номер регистра.

Компьютер посылает контроллеру запрос или команду и получает от контролера соответственно ответ или подтверждение (см. рис. 3.3). Запрос посылается компьютером при необходимости получить от контроллера (функционального блока) какую-либо информацию.

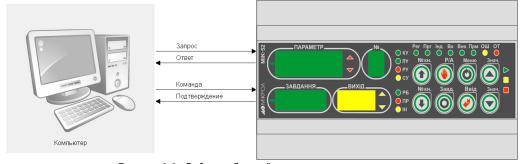


Рисунок 3.3 - Виды сообщений при связи с компьютером

Получив запрос, контроллер готовит требуемую информацию и передает ее компьютеру в виде ответа. Команда посылается компьютером при необходимости изменить параметры настройки блока. Получив команду, контроллер ее исполняет и передает компьютеру подтверждение.

Компьютер при обмене информацией с контроллерами имеет ряд возможностей:

- Запросить значение сигнала на любом выходе любого блока в любом контроллере.
- Запросить значение любого параметра настройки любого блока в любом контроллере.
- Изменить значение любого параметра любого блока в любом контроллере.
- Осуществлять пуск/стоп программного задатчика.
- Запросить наличие ошибок в любом контроллере. При работе с оперативными параметрами компьютер может запрашивать и изменять те же параметры, которые наблюдает и изменяет оператор, работая с лицевой панелью контроллера (см. гл. 4).

3.3.4 Возможности комбинированной организации обмена информацией между контроллерами и компьютером

Комбинированная организация обмена объединяет все преимущества двух первых способов сетевого обмена:

- 1) обмен информацией между контроллерами (через компьютер),
- 2) обмен информацией между контроллерами и компьютером.

Логическая организация комбинированного обмена по сети имеет следующие возможности:

- 1) при обмене информацией между контроллерами (компьютер является диспетчером сетевого обмена), контроллеры передают информацию по сети от одного другому с помощью функциональных блоков сетевого обмена,
- 2) данная передаваемая информация (между контроллерами) по сети оказывается доступной и компьютеру.

Таким образом, комбинированная организация обмена предоставляет возможность сделать доступной информацию при сеансе обмена между контроллерами сразу нескольким абонентам сети: компьютеру и одному или нескольким контроллерам. Что тем самым сокращает время доступа к данным и период обмена по сети.

3.4 Коммуникационные функции

Связь компьютера с сетью контроллеров организуется на трех уровнях: физическом, информационном и транспортном.

Физический уровень предназначен для электрической связи между компьютером и контроллерами. На физическом уровень используется интерфейс RS-485. Физический уровень организации сети представлен в разделе 3.2.

Информационный уровень придает передаваемым сообщениям определенный формат передаваемого кадра: на передающей стороне добавляет к сообщениям адрес устройства, функциональный код операции и байты контрольной суммы, а на приемной стороне выделяет данные и контролирует контрольную сумму сообщения. Смысл сообщения на информационном уровне не расшифровывается.

Транспортный уровень формирует смысловое содержание сообщения при передаче и расшифровывает смысл этого сообщения при приеме.

Интерфейс контроллера предназначен для программирования и конфигурирования прибора, для использования в качестве удаленного контроллера при работе в современных сетях управления и сбора информации (приема-передачи команд и данных), SCADA системах и т.п.

Протоколом связи по интерфейсу RS-485 является протокол MODBUS режим RTU (Remote Terminal Unit).

Для работы необходимо настроить коммуникационные характеристики контроллера таким образом, чтобы они совпадали с настройками обмена данными компьютера и других контроллеров. Характеристики сетевого обмена настраиваются на соответствующем уровне конфигурации, см. раздел 5.

При обмене по интерфейсному каналу связи, если происходит передача данных от контроллера в сеть, на лицевой панели контроллера мигает индикатор IHT.

Формирование области программируемых регистров контроллера представлено в разделе 3.4.1.

Количество запрашиваемых регистров не должно превышать 16. Если в кадре запроса заказано более 16 регистров, контроллер МИК-53H в ответе ограничивает их количество до первых 16-ти регистров.

При программировании с компьютера необходимо контролировать диапазоны изменения значений параметров, указанные в таблицах 2.1-2.2.

Для обеспечения минимального времени реакции на запрос от ПК в контроллере существует параметр - «Тайм-аут кадра запроса в системных тактах контроллера 1 такт = 250 мкс». Минимально возможные тайм-ауты для различных скоростей приведены в таблице 3.1:

Таблица 3.1 - Тайм-аут кадра запроса

Скорость, бит/с	Время передачи кадра запроса, мсек	Тайм-аут, в системных тактах 1 такт = 250 мкс
2400	36,25	135
4800	18,13	70
9600	9,06	35
14400	6,04	25
19200	4,53	20
28800	3,02	15
38400	2,27	12
57600	1,52	8

Продолжение таблицы 3.1 - Тайм-аут кадра запроса		
76800	1,13	5
115200	0,76	4
230400	0,38	3
460800	0,2	2
921600	0,1	1

Время передачи кадра запроса - пакета из 8-ми байт определяется соотношением (где: один передаваемый байт = 1 старт бит+ 8 бит + 1стоп бит = 10 бит):

Если наблюдаются частые сбои при передаче данных от контроллера, то необходимо увеличить значение его тайм-аута, но при этом учесть, что необходимо увеличить время повторного запроса от ПК, т.к. всегда время повторного запроса должно быть больше тайм-аута контроллера.

3.4.1 Формирование области программируемых регистров

На рисунке 3.4 приведен пример распределения базовых адресов параметров функциональных блоков, что определяет сформированную область программируемых регистров контроллера.



Рисунок 3.4 – Пример распределения базовых адресов параметров

Формирование регистров осуществляется в процессе программирования путем присвоения каждому функциональному блоку соответствующего базового адреса параметров (свойств) в регистровой области.

Присвоение базового адреса параметров каждого функционального блока производится на 2-м уровне программирования (см. раздел 5). Для каждого блока, начиная с первого, указывается только базовый адрес первого свойства (для блоков без свойств базовые адреса не выделяются), последующие свойства выделяются автоматически, для каждого следующего блока базовый адрес записывается с учетом уже существующих адресов. Например: для 1 блока с 4 свойствами первый адрес будет 0, а для следующего адрес будет 0+4, то есть его свойства будут занимать регистры с 4 по N.

Это позволяет зафиксировать свойства блоков в регистровой области, и их адресация (прямая) в дальнейшем не будет зависеть от изменений самой программы.

Косвенная адресация (Номер блока – Номер параметра или номер выхода) зависит от номера, который присваивается блоку в процессе программирования, изменение этого номера, например, с целью изменить порядок выполнения функциональных блоков, будет требовать изменения настройки в SCADA-системе.

3.4.2 MODBUS протокол

3.4.2.1 Формат байта, который принимается и передается контроллерами следующий:

1 start bit, 8 data bits, 1 Stop Bit (No Parity Bit) LSB (Least Significant bit) младший бит передается первым.

Калр сообщения протокола Modbus:

DEVICE ADDRESS	FUNCTION CODE	DATA	CRC CHECK
8 BITS	8 BITS	k x 8 BITS	16 BITS

Где k≤16 – количество запрашиваемых регистров. Если в кадре запроса заказано более 16 регистров, контроллер МИК-53H в ответе ограничивает их количество до первых 16-ти регистров.

3.4.2.2 Device Address. Адрес устройства

Адрес контроллера (slave-устройства) в сети (1-255), по которому обращается SCADA система (master-устройство) со своим запросом. Когда удаленный контроллер посылает свой ответ, он размещает этот же (собственный) адрес в этом поле, чтобы master-устройство знало, какое slave-устройство отвечает на запрос.

3.4.2.3 Function Code. Функциональный код операции

Контроллер МИК-53H поддерживает следующие функции протокола Modbus RTU «Микрол»:

Function	Функция	Метод адресации
03	Чтение регистра (ов) (№+1)	Непрямая адресация
04	Чтение параметров (№+1)	Непрямая адресация
16	Запись параметров	Непрямая адресация
65	Запись параметров	Прямая адресация
74	Чтение параметров	Прямая адресация
80	Инициализация обмена по сети	
81	Обмен по сети	

Контроллер МИК-53Н поддерживает следующие функции протокола Modbus RTU «Modicon»:

Function	Функция	Метод адресации
03	Чтение и запись параметров (№+1)* Чтение регистров (№+200)**	Непрямая адресация
16	Запись параметров	Непрямая адресация
65	Запись параметров	Прямая адресация
74	Чтение параметров	Прямая адресация
80	Инициализация обмена по сети	
81	Обмен по сети	

Подробный формат функциональных кодов операции представлен в разделе 3.4.4.

Порядковый номер блока*256+(1+((Номер параметра блока -1)*2))=Регистр чтения/записи свойств блока

Например, если необходимо считать/записать значение параметра SP (номер свойства 12) блока USER(63) с порядковым номером 2, то по формуле:

Порядковый номер блока*256+(Номер выхода блока +200)=Регистр чтения выхода блока

Если выход блока – вещественный, то этот выход резервирует 2-а регистра, рассмотрим пример, необходимо рассчитать все регистры для выходов функционального блоку AIN(05) с порядковым номером 1, то по формуле:

Выход dErr:256+1+200=457;Выход dMAX:256+2+200=458;Выход dMIN:256+3+200=459;Выход OUT.SCAL:256+4+200=460;Выход OUT:256+(5+1)+200=462

,где (5+1) - 5 - номер выхода OÚT;

1 – выход OUT.SCAL – вещественный и резервирует 2 регистры.

3.4.2.4 CRC Check. Поле значения контрольной суммы

Значение этого поля - результат контроля с помощью циклического избыточного кода (Cyclical Redundancy Check -CRC).

После формирования сообщения (address, function code, data) передающее устройство рассчитывает CRC код и помещает его в конец сообщения. Приемное устройство рассчитывает CRC код принятого сообщения и сравнивает его с переданным CRC кодом. Если CRC код не совпадает, это означает что имеет место коммуникационная ошибка. Устройство не выполняет действий и не дает ответ в случае обнаружения CRC ошибки.

^{*} Для чтения/записи значений параметров блоков, необходимо использовать следующую формулу:

^{**} Для чтения значений выходов блоков, необходимо использовать следующую формулу:

<u>Последовательность CRC расчетов:</u>

- 1. Загрузка CRC регистра (16 бит) единицами (FFFFh).
- 2. Исключающее ИЛИ с первыми 8 бит байта сообщения и содержимым CRC регистра.
- 3. Сдвиг результата на один бит вправо.
- 4. Если сдвигаемый бит = 1, исключающее ИЛИ содержимого регистра с A001h значением.
- 5. Если сдвигаемый бит нуль, повторить шаг 3.
- 6. Повторять шаги 3, 4 и 5 пока 8 сдвигов не будут иметь место.
- 7. Исключающее ИЛИ со следующими 8 бит байта сообщения и содержимым СRC регистра.
- 8. Повторять шаги от 3 до 7 пока все байты сообщения не обработаются.
- 9. Конечное содержимое регистра и будет значением контрольной суммы.

Когда CRC размещается в конце сообщения, младший байт CRC передается первым.

3.4.2.5 Пример расчета контрольной суммы (CRC)

Пример расчета контрольной суммы на языке СИ:

Example of CRC calculation in "C" language

```
unsigned int crc calculation (unsigned char *buff, unsigned char number byte)
 unsigned int crc;
 unsigned char bit_counter;
crc = 0xFFFF;
                                             // initialize crc
 while ( number byte>0 )
              crc ^= *buff++ ;
                                                     // crc XOR with data
              bit counter=0;
                                             // reset counter
              while ( bit_counter < 8 )</pre>
                         if ( crc & 0x0001 )
                            {
                                             // shift to the right 1 position
                               crc >>= 1:
                               crc ^= 0xA001;
                                                    // crc XOR with 0xA001
                           else
                                             // shift to the right 1 position
                                crc >>=1;
              bit counter++;
                                             // increase counter
           }
       number_byte--;
                                             // adjust byte counter
                                                     // final result of crc
 return (crc);
```

3.4.3 Формат функциональных кодов операции

3.4.3.1 Чтение значения выхода функционального блока (адресация непрямая) Функциональный код операции 03

RESPONSE

03 Read Output Reg Indirect Address

QUERY

	Запрос			Ответ		
	Field Name			Field Name	Field Name	
				type INT	type FLOAT, TIME	
1	Device		1	Device	Device	
2	Function		2	Function	Function	
3	NumBlock	block_num	3	QuantityByte	QuantityByte	
4	NumOutput	out_num	4	DataHI	DataHI (WordHI)	3
5	QuantityHI	quantity	5	DataLO	DataLO (WordHI)	2
6	QuantityLO		6	CRC_LO	DataHI (WordLO)	1
7	CRC_LO		7	CRC_HI	DataLO (WordLO)	0
8	CRC_HI				CRC_LO	
	•				CRC_HI	

Где, 1,2,3 ... - номер байта;

quantity - количество регистров (двух байтных);

QuantityByte – количество запрашиваемых байт данных (зависит от типа данных).

3.4.3.2 Чтение параметров (непрямая адресация) Функциональный код операции 04

04 Read Property Reg Indirect Address

	QUERY		RESPONSE	
	Запрос			Ответ
	Field Name			Field Name
1	Device		1	Device
2	Function		2	Function
3	NumBlock	block_num	3	QuantityByte
4	NumProperty	prop_num	4	DataHI
5	QuantityHI	quantity	5	DataLO
6	QuantityLO		6	DataHI
7	CRC_LO		7	DataLO
8	CRC_HI		8	CRC_LO
			9	CRC_HI

Примечание. При использовании протокола обмена Modbus RTU (стандарт "Modicon") для чтения свойств и выходов блоков используется только функция "03":

- для чтения свойств в параметре NumOutput прописывается адрес,
- для чтения выходов к адресу необходимо прибывать число 200.

Field Name

1	Device	
2	Function	
3	NumBlock	block_num
4	NumOutput	out_num (<200 – чтение свойств, ≥200 – чтение выходов)
5	QuantityHI	quantity
6	QuantityLO	
7	CRC_LO	
8	CRC_HI	

3.4.3.3 Запись параметров (непрямая адресация) Функциональный код операции 16

16 Write Property Reg Indirect Address

Запрос

QUERY

Field Name

1	Device	xx
2	Function	16
3	DataAddressHI	block_num
4	DataAddressLO	prop_num
5	DataQuantityHI	0
6	DataQuantityLO	2
7	ByteQuantity	4
8	DataHI	xx
9	DataLO	xx
10	DataHI	xx
11	DataLO	xx
12	CRC_LO	xx
13	CRC_HI	xx

RESPONSE

Ответ

Field Name

1	Device
2 3	Function
3	DataAddressHI
4	DataAddressLO
5 6	DataQuantityHI
	DataQuantityLO
7	CRC_LO
8	CRC_HI

3.4.3.4 Запись параметров (прямая адресация) Функциональный код операции 65

65 Write Property Reg Direct Address

QUERY RESPONSE OTBET

Запрос

Field Name

1	Device
2	Function
3	DataAddressHI
4	DataAddressLO
5	DataQuantityHI
1 2 3 4 5 6 7 8	DataQuantityLO
7	ByteQuantity
8	DataHI
9	DataLO
10	DataHI
11	DataLO
12	CRC_LO
13	CRC HI

Field Name

1	Device
2	Function
3	DataAddressHI
4	DataAddressLO
5	DataQuantityHI
6	DataQuantityLO
7	CRC_LO
8	CRC_HI

3.4.3.5 Чтение параметров (прямая адресация) Функциональный код операции 74

74 Read Property Direct Address

QUERY RESPONSE 3anpoc OTBET Field Name Field Name

1	Device
2 3	Function
3	DataAddressHI
4	DataAddressLO
4 5 6	QuantityHI
6	QuantityLO
7	CRC_LO
8	CRC_HI

1	Device
2 3	Function
3	QuantityByte
4 5	DataHI
5	DataLO
6	DataHI
7	DataLO
8 9	CRC_LO
9	CRC_HI

3.4.3.6 Инициализация обмена по сети, обмен по сети Функциональные коды операции 80, 81

80 **InitEXCHANGE** 81 **EXCHANGE**

80 InitEXCHANGE

81 EXCHANGE

RESPONSE Otbet

QUERY	
Запрос	
Ciald Nam	

1

Field Name			
Device	XX		
Function	80		

ı	Device	^^
2	Function	80
3	NumBlockLanHl	block_num
4	NumBlockLanLO	0
5	QuantityHI	NOT USE
6	QuantityLO	NOT USE
7	CRC_LO	xx
8	CRC_HI	xx

	Field Name	
1	Device	XX
2 3	Function	81
3	NumBlockLanHl	block_num
4	NumBlockLanLO	0
5	DataQuantityHI	0
6	DataQuantityLO	quantity
7	ByteQuantity	xx
8	1DataHI	xx
9	1DataLO	xx
10	1DataHI	xx
11	1DataLO	xx
53	12DataHI	XX

XX XX

XX

XX

XX

Где: «NOT USE» - произвольное значение.

3.4.3.7 Запись системных регистров Функциональный код операции 13

13 Write SYS registers

	QUERY			RESPONSE	
	Запрос				Ответ
	Field Name	RUN	PROGRAM		Field Name
1	Device	xx	xx	1	Device
2	Function	13	13	2	Function
3	DataAddressHI	0	0	3	DataAddressHI
4	DataAddressLO	xx	xx	4	DataAddressLO
5	QuantityHI	О	0	5	QuantityHI
6	QuantityLO	0xFF	0	6	QuantityLO
7	CRC_LO	xx	xx	7	CRC_LO
8	CRC_HI	xx	xx	8	CRC_HI

54

55

56

12DataLO

12DataHI

12DataLO

CRC_LO

CRC_HI

Адрес	Команда	Знач	Состояние
DataAddressLO	Command	QuantityLO	State
1	PRG_STATUS	0xFF	RUN
	Режим работы	0	PROGRAM
2	CHANGE_EN	0	Disable
	Разрешение изменения	0xFF	Enable
3	LOAD(RAM)		
	Загрузка программы		
4	SAVE(EEPROM)		
	Coxpaнение в EEPROM		

3.4.3.8 Чтение системных регистров Функциональный код операции 77

77 Read SYS registers

QUERY	RESPONSE
Запрос	Ответ
Field Name	Field Name

1	Device	xx
2	Function	77
3	DataAddressHI	0
4	DataAddressLO	xx
5	QuantityHI	0
6	QuantityLO	2
7	CRC_LO	xx
8	CRC_HI	xx

1	Device	XX
2	Function	77
2 3	QuantityByte	04
4	DataHI	
5 6	DataLO	
6	DataHI	
7	DataLO	
8	CRC_LO	
9	CRC_HI	

4 Оперативное управление

4.1 Элементы оперативного управления

Для лучшего наблюдения и управления технологическим процессом контроллер МИК-53Н оборудован активной четырехразрядной цифровой индикацией. Для отображения измеряемой величины используется дисплей **ПАРАМЕТР**, заданной точки - дисплей **ЗАВДАННЯ**, значения управляющего воздействия - дисплей **ВИХІД**. Лицевая панель контроллера содержит необходимое количество клавиш обслуживания и сигнализационных светодиодных индикаторов для различных статусных режимов и сигналов. Внешний вид лицевой панели и элементов оперативного управления контроллера МИК-53Н приведен на рисунке 4.1.

Назначения элементов оперативного управления контроллера МИК-53H — дисплеев, светодиодных индикаторов и клавиш приведено в разделах 4.1.1-4.1.3.

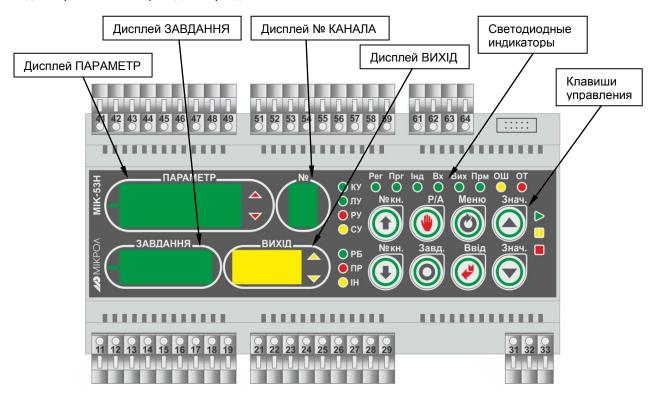


Рисунок 4.1 - Элементы оперативного управления

4.1.1 Назначение дисплеев лицевой панели

• ПАРАМЕТР В режиме РАБОТА индицирует значение выбранной измеряемой величины, регулируемой

В режиме ПРОГРАММИРОВАНИЕ индицирует номер выбранного параметра.

• ЗАВДАННЯ В режиме РАБОТА индицирует значение заданной точки выбранного контура

регулирования или значение заданной точки выбранного программного задатчика или другое значение технологического параметра.

другое значение технологического параметра.

В режиме ПРОГРАММИРОВАНИЕ индицирует значение параметра программирования или

конфигурации.

• ВИХІД В режиме РАБОТА индицирует значение управляющего воздействия, подаваемого на аналоговый или импульсный выход устройства или сигнал положения исполнительного

механизма (в %) выбранного регулятора. Индицирует значение управляющего воздействия

задатчика выбранной пользовательской панели индикации и управления.

В режиме ПРОГРАММИРОВАНИЕ на данный дисплей выводятся значения

вспомогательных параметров.

• № **КАНАЛА** В режиме РАБОТА индицирует номер выбранного канала регулятора, программного

задатчика, номер пользовательской панели.

В режиме ПРОГРАММИРОВАНИЕ индицирует номер уровня программирования.

4.1.2 Назначение светодиодных индикаторов

• Рег Светится, если выбрана панель индикации и управления регулятором (PID(60),

PID_CAS(61), PID_IMP(62), D_PID(95) или D_PID_I(96)).

Переключение номера регулятора осуществляется с помощью клавиш "№кн↑" и "№кн↓".

Максимальное количество регуляторов задается при программировании (не более 9).

• Прг Светится, если выбрана панель индикации и управления программным задчиком (т.е.

функциональным блоком TM_PRG(57)).

Переключение номера программного задатчика осуществляется с помощью клавиш

"№кн↑" и "№кн↓".

• Інд Светится, если выбрана пользовательская панель индикации и управления. Информация

и управление определяются пользователем при программировании в функциональном

блоке USER(63).

• Вх Светится, если выбрана панель индикации входов функциональных блоков.

• Вих Светится, если выбрана панель индикации выходов функциональных блоков.

• Прм Светится, если выбрана панель индикации и редактирования параметров

функциональных блоков. (см. также п.7.2.1.4).

• ОШ Светится в режиме ПРОГРАММИРОВАНИЕ и мигает в режиме РАБОТА при наличии

ошибок программирования.

• ОТ Светится только в режиме ПРОГРАММИРОВАНИЕ, если существует системный или

программируемый ОТКАЗ (см. раздел 7.2.1.7 – Контроль отказов).

• ► Светится, если программный задатчик находится в режиме "работа".

• || Светится, если программный задатчик находится в режиме "ожидание" или "останов".

•

Светится, если программный задатчик находится в режиме "стоп" или "конец программы".

• КУ Светится (в зависимости от выбранной структуры регулятора), если регулятор находится в

каскадном режиме управления.

• ЛУ Светится, если регулятор находится в локальном режиме управления.

• РУ Светится, если регулятор находится в ручном режиме управления, и не светится, если

регулятор находится в автоматическом режиме управления.

• СУ Светится, если регулятор находится в следящем режиме управления (tracking).

• РБ Светится, если контроллер МИК-53Н находится в режиме РАБОТА

• ПР Светится, если контроллер МИК-53Н находится в режиме ПРОГРАММИРОВАНИЕ.

• ІН Мигает, если происходит передача данных по интерфейсному каналу связи.

▲ (дисплей ПАРАМЕТР)

Светится, если значение выбранной измеряемой величины превышает значение уставки сигнализации отклонения **МАХ**.

▼ (дисплей ПАРАМЕТР)

Светится, если значение выбранной измеряемой величины меньше значения уставки сигнализации отклонения **МІN**.

▲ (дисплей ВИХІД) Светодиодный индикатор состояния ключа БОЛЬШЕ импульсного или трехпозиционного регулятора. Светится при включенном ключе БОЛЬШЕ.

▼ (дисплей ВИХІД) Светодиодный индикатор состояния ключа МЕНЬШЕ импульсного или трехпозиционного регулятора. Светится при включенном ключе МЕНЬШЕ.

4.1.3 Назначение клавиш

• [ひ] Меню

В режиме РАБОТА с помощью данной клавиши осуществляется переключение панелей режимов индикации обозначенных светодиодными индикаторами, расположенными под дисплеем ЗАВДАННЯ. Каждое нажатие клавиши МЕНЮ приводит к переключению на следующий справа индикатор (и т.д. по кругу):

В режиме ПРОГРАММИРОВАНИЕ данная клавиша выполняет функцию отмены выполненных действий, операций.

• [∜] Ввід

Клавиша предназначена для подтверждения выполняемых действий, операций и для фиксации вводимых значений. Например, подтверждение перехода из автоматического режима работы в режим ручного управления и обратно, фиксация ввода измененной заданной точки, продвижение по уровням программирования и т.п.

• [№кн ↑]

Клавиша предназначена для изменения индицируемого канала (входа, регулятора, шага программного задатчика) в сторону увеличения. В режиме конфигурирования используется для настройки условий переходов программного задатчика.

[№кн ↓]

Клавиша предназначена для изменения индицируемого канала (входа, регулятора, программного задатчика) в сторону уменьшения.

• [P/A]

- Каждое нажатие клавиши вызывает переход регулятора из автоматического режима работы в режим ручного управления и обратно (совместно с нажатием клавиши [�], для подтверждения выполнения операции перехода).
- Также, если выбрана панель индикации состояния программного задатчика, этой клавишей можно перевести программный задатчик в режим "работа", "ожидание" или "стоп".

• [Завд.]

Клавиша предназначена для вызова индицируемого значения внутренней заданной точки для редактирования или для переключения режимов заданных величин.

• [▲] Знач.

Клавиша "Больше". При каждом нажатии этой клавиши осуществляется увеличение значений, заданной точки, выходного сигнала управления (управляющего воздействия) или значения изменяемого параметра. При удерживании этой клавиши в нажатом положении увеличение значений происходит непрерывно.

• [▼] Знач.

Клавиша "Меньше". При каждом нажатии этой клавиши осуществляется уменьшение значений, заданной точки, выходного сигнала управления (управляющего воздействия) или значения изменяемого параметра. При удерживании этой клавиши в нажатом положении уменьшение значений происходит непрерывно.

Изменение значений выводимых на различные дисплеи (цифровые индикаторы) представлено на рисунке 4.2:

Рисунок 4.2 - Изменение значений на различных дисплеях

4.2 Оперативное управление контурами регулирования

4.2.1 Общие правила

Для того чтобы вести оперативное управление контуром регулирования, контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации регуляторов светится индикатор РЕГ.

В контроллере можно организовать от 0 до 9 контуров регулирования.

Оперативное управление ведется по избирательному принципу: выбирается номер контура и для него контролируются и изменяются режимы, параметры и сигналы. Исключение составляет лишь контроль ошибок, который ведется для всего контроллера в целом.

4.2.2 Лицевая панель

МИК-53Н в режиме оперативного управления контурами Лицевая панель контроллера регулирования представлена на рис.4.2.

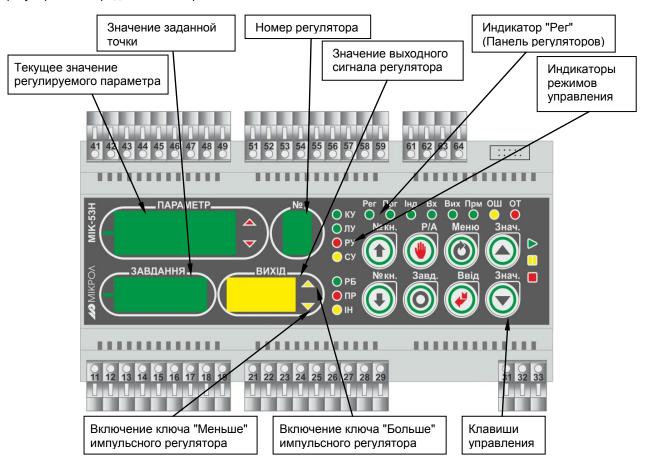


Рисунок 4.2 - Лицевая панель в режиме оперативного управления контурами регулирования

Одноразрядный дисплей "№" – контур - показывает номер контура регулятора, с которым работает оператор.

На четырехразрядный дисплей ПАРАМЕТР выводится текущее значение регулируемого параметра. Два светодиодных индикатора ▼ и ▲ в этой группе сигнализируют о срабатывании сигнализации выхода индицируемого параметра за уставки "меньше" или "больше".

На четырехразрядный дисплей ЗАВДАННЯ выводится текущее значение заданной точки.

На трехразрядный дисплей ВИХІД выводится значение сигнала на выходе регулятора. Два светодиодных индикатора ▼ и 🛦 в этой группе сигнализируют о срабатывании выходов импульсного регулятора в направлении "меньше" или "больше".

Четыре светодиодных индикатора «режим управления» указывают, в каком режиме работает контур:

- КУ каскадное управление,
- ЛУ локальное управление,
- РУ ручное управление, СУ следящее управление.

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами регулирования.

4.2.3 Изменение режимов рабочего уровня, уровни защиты рабочего уровня

На рабочем уровне возможно изменение режима работы регулятора – осуществление перехода из автоматического режима управления (каскадный – КУ и локальный - ЛУ) в ручной режим управления (РУ) и обратно, осуществлять изменение значения заданной точки, изменять значение управляющего воздействия (в ручном режиме управления регулятором).

Имеется уровень защиты для изменения режимов работы рабочего уровня. Если оператор *не подтверждает* своих действий нажатием клавиши [♣], то данные действия оператора воспринимаются как неверное действие или случайное переключение режима работы. Это и представляет *уровень защиты* от случайного переключения режима работы, индикатор **КУ** перестанет мигать и погаснет, а регулятор останется в автоматическом локальном режиме управления.

4.2.3.1 Изменение режима работы регулятора

В регуляторах, используемых в контроллере МИК-53H, имеется **три** режима работы управления объектом регулирования:

- автоматический режим работы, который состоит из режимов:
 - каскадный режим управления КУ
 - локальный режим управления ЛУ
- ручной режим работы РУ.

Режим работы регулятора - автоматический (каскадный, локальный) или ручной является запоминаемым состоянием. После включения питания регулятор находится в том режиме, в котором он находился на момент отключения.

Каскадный режим работы регулятора выбирается при соответствующей конфигурации структуры функционального блока выбранного регулятора.

Более подробно библиотека и описание функциональных блоков, представлены в руководстве по эксплуатации *ПРМК.421457.005* <u>РЭ2</u>.

Выбор режима управления: ручной РУ, локальный ЛУ, каскадный КУ осуществляется нажатием клавиши [Р/А] на лицевой панели регулятора с последующим нажатием клавиши [ေ/#]. Переход из ручного режима управления РУ в каскадный КУ блокирован, и возможен только после выбора локального режима управления ЛУ.

Выбор режима управления сопровождается свечением соответствующего светодиодного индикатора на лицевой панели прибора:

- в каскадном режиме светится индикатор КУ,
- в локальном режиме светится индикатор ЛУ,
- в ручном режиме светится индикатор РУ.

4.2.3.2 Автоматический каскадный или локальный режим работы регуляторов

Переход на ручной режим работы

Автоматический каскадный или локальный режим работы

• В автоматическом каскадном или локальном режиме работы регулятор управляет объектом регулирования согласно выбранному закону регулирования и с соответствующими настройками пользователя.

Ору

• В автоматическом режиме работы индикатор **РУ** на лицевой панели погашен. Светится один из индикаторов **ЛУ** или **КУ**, в соответствии с выбранным на данный момент режимом.

☞ [P/A]

• Для перехода в ручной режим управления необходимо нажать клавишу **[P/A]** на лицевой панели регулятора.

‡ P)

• Индикатор РУ на лицевой панели начинает мигать.

ኇ [ඒ] ● py • Если оператор нажал клавишу [ऺ/❷] в процессе мигания индикатора РУ (приблизительно 10-15 секунд) — произойдет фиксация выбранного режима и регулятор перейдет в режим ручного управления, индикатор РУ будет светиться — что будет в дальнейшем указывать на ручной режим работы.

Уровень защиты

• Если оператор *не подтверждает* своих действий нажатием клавиши [ॳ], то данные действия оператора воспринимаются как неверное действие или случайное

переключение режима работы.

• Это и представляет уровень защиты от случайного переключения режима работы, индикатор РУ перестанет мигать и погаснет, а регулятор останется в автоматическом режиме управления - каскадном или локальном.

4.2.3.3 Ручной режим работы регуляторов

Переход на автоматический локальный режим работы

• В ручном режиме работы оператор с лицевой панели с помощью клавиш [🛦] "больше" Ручной режим и [▼] "меньше", управляет выходом регулятора, тем самым формирует значение работы управляющего воздействия, подаваемое на исполнительный механизм. КУ ЛУ • Индикатор РУ на лицевой панели светится. Индикаторы КУ и ЛУ не светятся. ☞ [P/A] • Для перехода в автоматический локальный режим управления необходимо дважды нажать клавишу [Р/А] на лицевой панели регулятора. • Индикатор ЛУ на лицевой панели начинает мигать, если оператор нажал клавишу [생] в процессе мигания индикатора ЛУ (приблизительно 10-15 секунд) – произойдет фиксация выбранного режима и регулятор перейдет в режим автоматического локального управления. **☞** [﴿) О ку • Индикатор РУ погаснет и засветится индикатор ЛУ – что будет в дальнейшем ЛУ указывать на автоматический локальный режим работы. • Если оператор не подтверждает своих действий нажатием клавиши [4], то данные действия оператора воспринимаются как неверное действие или случайное Уровень защиты переключение режима работы. • Это и представляет уровень защиты от случайного переключения режима работы, индикатор ЛУ перестанет мигать и погаснет, а регулятор останется в ручном режиме

4.2.3.4 Автоматический локальный режим работы регуляторов

Переход на автоматический каскадный режим работы.

переключение режима работы.

локальном режиме управления.

управления.

Hopoxod III as Ioma II Iooma I		
Автоматический локальный режим работы	• В автоматическом локальном режиме работы регулятор управляет объектом регулирования согласно выбранному закону регулирования и с соответствующими настройками пользователя.	
О ку ● лу О Ру	• Индикатор ЛУ на лицевой панели светится. Индикаторы РУ и КУ не светятся.	
ℱ [P/A]	• Для перехода в автоматический <i>каскадный</i> режим управления необходимо <i>трижды</i> нажать клавишу [Р/А] на лицевой панели регулятора.	
₩ ку ● лу ○ Ру • [#]	• Индикатор КУ на лицевой панели начинает мигать, если оператор нажал клавишу [<i>∀</i>] в процессе мигания индикатора КУ (приблизительно 10-15 секунд) – произойдет <i>фиксация выбранного режима</i> и регулятор перейдет в режим автоматического <i>каскадного</i> управления.	
кулуРу	• Индикатор ЛУ погаснет и засветится индикатор КУ – что будет в дальнейшем указывать на автоматический <i>каскадный</i> режим работы.	
Уровень	• Если оператор <i>не подтверждает</i> своих действий нажатием клавиши [♂], то данные действия оператора воспринимаются как неверное действие или случайное	

Индикация

защиты

• В каскадном регуляторе индикация параметров Master осуществляется при переходе на каскадное регулирование (свечение светодиода **КУ**), а Slave на локальном (свечение светодиода ЛУ)

• Это и представляет уровень защиты от случайного переключения режима работы, индикатор КУ перестанет мигать и погаснет, а регулятор останется в автоматическом

4.2.4 Изменение значения заданной точки регуляторов

Для того чтобы изменить заданную точку контура регулирования, контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации регуляторов – светится индикатор РЕГ. На дисплей **ПАРАМЕТР** выводится значение измеряемой величины, а на дисплей **ЗАВДАННЯ** — значение заданной точки.

В регуляторе имеется заданная точка, используемая только в автоматическом режиме управления. По отношению к функциональному блоку регулирования заданная точка регулятора может быть внутренней или внешней.

Внутренняя заданная точка изменяется с лицевой панели прибора. Значение внутренней заданной точки является запоминаемым значением. После включения питания регулятор начинает работу с тем значением и с тем видом заданной точки, которое было на момент отключения.

Внешняя заданная точка регулятора может задаваться, например, с внешнего аналогового входа или формироваться другим функциональным блоком. При выбранном виде ВНЕШНЕЙ заданной точки возможен только ее контроль на дисплее **ЗАВДАННЯ**, изменить ее значение с лицевой панели регулятора невозможно.

Процедура изменения значения внутренней заданной точки

• При выбранном регуляторе выбрать соответствующий режим индикации изменения заданной точки.

🕜 [Завд]

• Для изменения значения внутренней (локальной) заданной точки необходимо нажать клавишу [Завд].

• На лицевой панели начинает мигать дисплей **ЗАВДАННЯ**. На данном этапе при мигающем дисплее **ЗАВДАННЯ** возможно изменение значения внутренней заданной точки

☞ [▲] **☞** [▼] • С лицевой панели с помощью клавиш [▲] "больше" и [▼] "меньше", установить необходимое значение внутренней заданной точки, индицируемой на дисплее **ЗАВДАННЯ**.

☞ [생]

• Если оператор нажал клавишу [ॐ] в процессе мигания дисплея **ЗАВДАННЯ** (приблизительно 10-15 секунд) - регулятор перейдет на режим управления с новым значением внутренней заданной точки.

Уровень защиты

- Если оператор *не подтверждает* своих действий нажатием клавиши [♯] в процессе мигания индикатора ЛУ (приблизительно 10-15 секунд), то данные действия оператора воспринимаются как неверное действие или случайное изменение значения.
- Это и представляет *уровень защиты* от случайного изменения значения внутреннего задания, индикатор **ЛУ** перестанет мигать и начнет светиться, а регулятор вернется в работу с прежним значением внутренней (локальной) заданной точки.

Примечание. При изменении заданной точки регулятора действуют режимы ускоренного изменения значений – см. рис. 4.2.

4.2.5 Изменение значения управляющего воздействия

● ру

• Для изменения значения управляющего воздействия регулятор должен находиться в ручном режиме управления. Если регулятор находится в автоматическом режиме, его необходимо перевести в ручной режим управления – см. раздел 6.4.1. Индикатор **РУ** на лицевой панели светится. Выбран ручной режим управления.

ኇ [▲] ኇ [▼] • В ручном режиме работы оператор с лицевой панели с помощью клавиш [▲] "больше" и [▼] "меньше", управляет выходом регулятора, тем самым формирует значение управляющего воздействия, подаваемое на исполнительный механизм через ключи БОЛЬШЕ-МЕНЬШЕ или аналоговый выход, в зависимости от выбранного типа регулятора (см. параметры соответствующего функционального блока регулирования).

вихід

20.0

- Значение выходного сигнала в % (в зависимости от выбранной структуры регулятора) индицируется значение на дисплее **ВИХІД**:
- выходного аналогового сигнала,
- значение выдаваемой мощности на выходные ключи БОЛЬШЕ-МЕНЬШЕ,
- внешний сигнал положения механизма.

BMXI40.0 ►

 При изменении значения управляющего воздействия после первого нажатия любой из клавиш [▲] "больше" или [▼] "меньше" начинает мигать дисплей ВИХІД, либо **ВИХІД**40.0

светодиодные индикаторы ▲ или ▼, указывая тем самым оператору какой параметр (сигнал) в данный момент изменяется.

• После окончания изменения значения управляющего воздействия, после отпускания клавиш [▲] "больше" или [▼] "меньше" по истечении 3-4 секунд дисплей **ВИХІД** перестает мигать, а значение выхода фиксируется в энергонезависимой памяти.

Примечание. При изменении управляющего воздействия регулятора действуют режимы ускоренного изменения значений – см. рис. 4.2.

4.3 Оперативное управление программным задатчиком

4.3.1 Общие правила

Чтобы вести оперативное управление программным задатчиком, контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации программного задатчика – светится индикатор ПРГ.

В контроллере можно организовать от 1 до 9 программных задатчиков.

Оперативное управление ведется по избирательному принципу: выбирается номер и для него контролируются и изменяются номера шагов программы.

4.3.2 Лицевая панель

Лицевая панель контроллера МИК-53H в режиме оперативного управления программным задатчиком представлена на рис. 4.3.

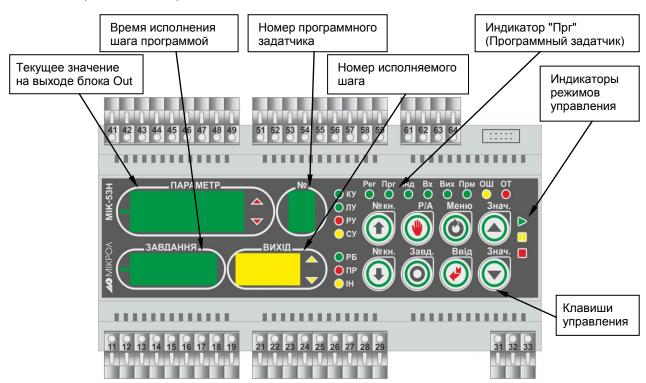


Рисунок 4.3 - Лицевая панель в режиме оперативного управления программным задачиком

Одноразрядный дисплей "№" – показывает номер программного задатчика, с которой работает оператор.

На четырехразрядный дисплей ПАРАМЕТР выводится текущее значение, подаваемое на выход программного задатчика.

На четырехразрядный дисплей ЗАВДАННЯ выводится время до окончания текущего шага программы.

На трехразрядный дисплей ВИХІД текущий шаг программы.

Три светодиодных индикатора указывают, в каком состоянии работает контур:

- программный задатчик в режиме «работа»,
- ___ программный задатчик в режиме «пауза»,
- программный задатчик в режиме «стоп».

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами регулирования.

4.3.3 Изменение режимов рабочего уровня, уровни защиты рабочего уровня

На рабочем уровне возможно изменение режима работы («работа», «пауза», «стоп») — осуществление перехода из режима "работа" в режим "пауза", из режима "пауза" в режим "стоп", из режима "стоп" в режим "работа" и наоборот.

Имеется уровень защиты для изменения режимов. Если оператор *не подтверждает* своих действий нажатием клавиши [ॳ], то данные действия оператора воспринимаются как неверное действие или случайное переключение режима работы.

4.3.3.1 Изменение режима программного задатчика

Режим работы программного задатчика является *запоминаемым состоянием*. После включения питания регулятор находится в том режиме и на том же шаге, в котором он находился на момент отключения.

Более подробно библиотека и описание функциональных блоков, представлены в руководстве по эксплуатации *ПРМК.421457.005 РЭ2*.

Выбор режима управления: работа, пауза, стоп осуществляется нажатием клавиши [Р/А] на лицевой панели регулятора с последующим нажатием клавиши [⋪].

Выбор режима управления сопровождается свечением соответствующего светодиодного индикатора на лицевой панели прибора:

- в режиме «работа» светится индикатор >,
- в режиме «пауза» светится индикатор
- в режиме «стоп» светится индикатор ...

4.3.3.2 Переход между режимами

• Для перехода в другой режим необходимо нажать клавишу [Р/А] на лицевой панели регулятора.

При этом начнет мигать один из индикаторов >, | или =.

ø- [ଐ

Для перехода в тот или иной режим нужно при мигании соответствующего индикатора подтвердить его клавишей «Ввід».

Уровень защиты • Если оператор не нажал клавишу [�] в процессе мигания одного из индикаторов – фиксация выбранного режима не произойдет.

4.3.4 Изменение шага программы

Чтобы изменить шаг программного задатчика, контроллер МИК-53H должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации программного задатчика – светится индикатор Прг. На дисплей **ВИХІД** выводится номер текущего шага программы.

Шаг программы является *запоминаемым значением*. После включения питания программный задатчик начинает работу с того шага, на котором была на момент отключения.

Процедура изменения шага программы

- При выбранном соответствующем режиме индикации выбрать необходимый номер программного задатчика (1-9).
- 🕜 [Завд]
- Для изменения номера шага программы необходимо нажать клавишу [Завд].

- На лицевой панели начинает мигать дисплей **ВИХІД**. На данном этапе при мигающем дисплее **ВИХІД** возможно изменение значения внутренней заданной точки.
- **ℱ** [▲]
- С лицевой панели с помощью клавиш [▲] "больше" и [▼] "меньше", установить необходимый шаг, индицируемой на дисплее **ВИХІД**.
- **☞ [ଐ**]
- Если оператор нажал клавишу [$\rlap/\!\!\!/$] в процессе мигания дисплея **ВИХІД** программа перейдет на выбранный шаг.

Уровень защиты • Если оператор *не подтверждает* своих действий нажатием клавиши [⋪] в процессе мигания индикатора **ВИХІД,** то переход на выбранный шаг не произойдет.

4.4 Оперативное управление панелями индикации

4.4.1 Общие правила

Для того чтобы вести оперативное управление панелями индикации, контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации – светится индикатор ІНД. В контроллере можно организовать от 0 до 9 панелей индикации.

Оперативное управление ведется по избирательному принципу: выбирается номер и для него контролируются и задаются параметры.

4.4.2 Лицевая панель

Лицевая панель контроллера МИК-53Н в режиме оперативного управления панелями индикации представлена на рис. 4.4.

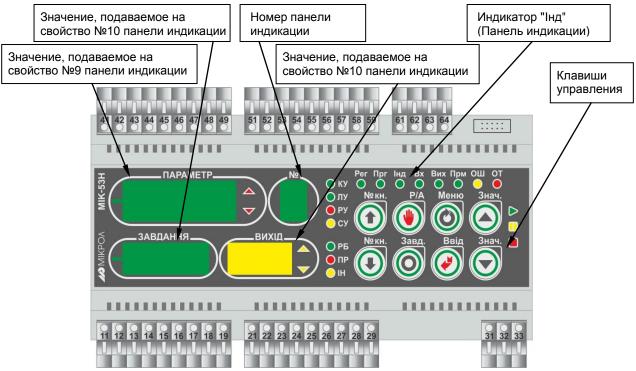


Рисунок 4.4 - Лицевая панель в режиме оперативного управления панелями индикации

Одноразрядный дисплей "№" – показывает номер панели индикации, с которым работает оператор. На четырехразрядный дисплей ПАРАМЕТР, ЗАВДАННЯ и трехразрядный ВИХІД выводятся текущие значения связных параметров.

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами индикации.

4.4.3 Изменение заданной точки панели индикации

Для того чтобы изменить выход функционального блока индикации, контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации – светится индикатор Інд. Выход данного функционального блока является запоминаемым значением. После включения питания блок индикации начинает работу с тем же выходом что и был на момент отключения.

Процедура изменения выхода блока индикации

- При выбранном соответствующем режиме индикации выбрать интересующий номер панели индикации (1-9).
- **ℱ** [Завд]
- Для изменения выхода блока индикации необходимо нажать клавишу [Завд].

- На лицевой панели начинает мигать дисплей **ЗАВДАННЯ**. На данном этапе при мигающем дисплее **ЗАВДАННЯ** возможно изменение выхода функционального блока индикации.
- ▲] С лицевой панели с помощью клавиш [▲] "больше" и [▼] "меньше", установить необходимый выход.

⊸ [♣]

 Если оператор нажал клавишу [♥] в процессе мигания дисплея ЗАВДАННЯ – выход изменится на тот, который был задан.

4.5 Оперативное управление панелью индикации входов функциональных блоков

4.5.1 Общие правила

Для того чтобы просмотреть вход функционального блока, контроллер МИК-53H должен быть переведен в режим РАБОТА. Также должна быть выбрана панель индикации входов функциональных блоков – светится индикатор ВХ.

4.5.2 Лицевая панель

Лицевая панель контроллера МИК-53H в режиме индикации входных параметров функциональных блоков представлена на рис. 4.5.

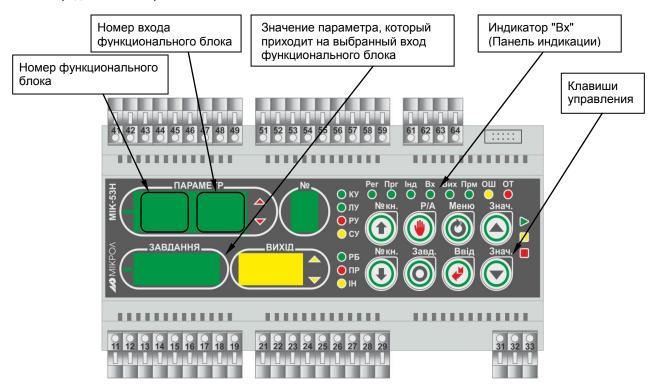


Рисунок 4.5 - Лицевая панель в режиме оперативного управления панелью индикации входов функциональных блоков

Четырехразрядный дисплей ПАРАМЕТР, в частности первых 2 разряда индикации указывают на номер функционального блока, а 3,4 разряды на номер входа этого функционального блока, который нужно индицировать. На дисплей ЗАВДАННЯ выводится текущее значение входного параметра.

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами индикации.

Данное меню предназначено только для индикации интересующего входного параметра функционального блока.

4.6 Оперативное управление панелью индикации выходов функциональных блоков

4.6.1 Общие правила

Для того чтобы просмотреть выход функционального блока контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации входов функциональных блоков – светится индикатор ВИХ.

4.6.2 Лицевая панель

Лицевая панель контроллера МИК-53H в режиме индикации входных параметров функциональных блоков представлена на рис. 4.6.

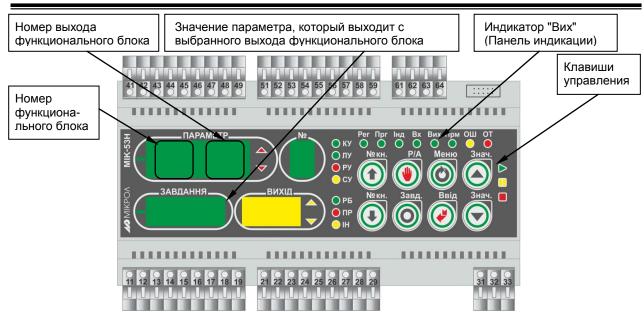


Рисунок 4.6 - Лицевая панель в режиме оперативного управления панелью индикации выходов функциональных блоков

Четырехразрядный дисплей ПАРАМЕТР, в частности первых 2 разряда индикации указывают на номер функционального блока, а 3,4 разряды на номер выхода этого функционального блока, который нужно индицировать. На дисплей ЗАВДАННЯ выводится текущее значение выходного параметра.

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами индикации.

Данное меню предназначено только для индикации интересующего выходного параметра функционального блока.

4.7 Оперативное управление панелью индикации и редактирования параметров функциональных блоков

4.7.1 Общие правила

Для того чтобы просмотреть или редактировать параметр функционального блока, контроллер МИК-53H должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации входов функциональных блоков – светится индикатор ПРМ. Параметру, который нужно отредактировать, также нужно присвоить флаг разрешения программирования в режиме РАБОТА (см. п. 5.2.1.4) - флаг «Рсh» при программировании из программного пакета «Альфа».

4.7.2 Лицевая панель

Лицевая панель контроллера МИК-53H в режиме индикации входных параметров функциональных оков представлена на рис. 4.7

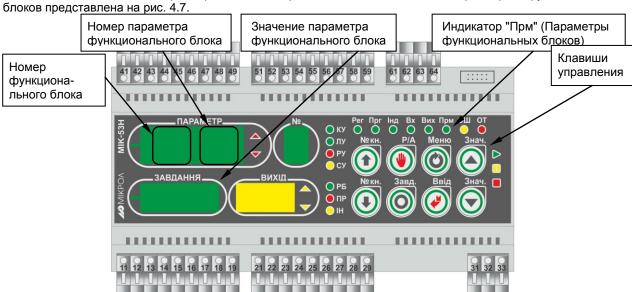


Рисунок 4.7 - Лицевая панель в режиме оперативного управления панелью индикации параметров функциональных блоков

Четырехразрядный дисплей ПАРАМЕТР, в частности первых 2 разряда индикации указывают на номер функционального блока, а 3,4 разряды на номер параметра функционального блока, который нужно индицировать или редактировать. На дисплей ЗАВДАННЯ выводится текущее значение выбранного параметра.

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами индикации.

Данное меню предназначено только для индикации интересующего выходного параметра функционального блока.

4.7.3 Изменение выбранного параметра функционального блока

Для того чтобы изменить параметр функционального блока контроллер МИК-53Н должен быть переведен в режим РАБОТА. Так же должна быть выбрана панель индикации и редактирования параметров функциональных блоков – светится индикатор Прм. Параметр данного функционального блока является запоминаемым значением. После включения питания блок начинает работу с тем же параметром что и был отредактирован на момент отключения.

Процедура изменения параметра функционального блока

- При выбранном соответствующем режиме индикации и редактирования параметров функциональных блоков. Выбрать необходимый номер функционального блока и номер параметра, который нужно отредактировать.
- ኇ [▲] ኇ [▼]
- С лицевой панели с помощью клавиш [▲] "больше" и [▼] "меньше", установить необходимое значение параметра функционального блока.
- **☞** [ଐ]
- Если оператор нажал клавишу [�] выход изменится на тот, который был задан.

4.8 Контроль ошибок

4.8.1 Общее назначение

Контроллер МИК-53Н оснащен функцией определения ошибок, при возникновении которых мигает индикатор меню «Ош», на данном уровне меню есть возможность просмотра типа и кода ошибки неисправностей (см. таблицу 5.6.2).

4.8.2 Лицевая панель

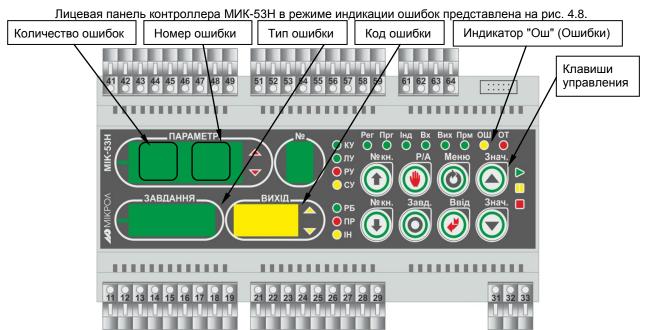


Рисунок 4.8 - Лицевая панель в режиме оперативного управления панелью индикации ошибок

Четырехразрядный дисплей ПАРАМЕТР, в частности первых 2 разряда индикации указывают на количество ошибок, 3,4 разряды на номер выбранной ошибки. На дисплей ЗАВДАННЯ выводится тип выбранной ошибки, а на дисплей ВИХІД код ошибки (или в режиме программирования параметр 6.04).

Лицевая панель имеет 8 клавиш, с помощью которых ведется оперативное управление контурами индикации ошибок.

Данное меню предназначено только для индикации типа и кода ошибки.

5 Программирование, настройка и контроль

5.1 Лицевая панель в режиме программирования

Рисунок 5.1 - Лицевая панель контроллера МИК-53Н в режиме программирования

Клавиша для инверсии

входного сигнала при

настройке связей

Клавиша подтверждения

выполняемых действий

5.1.1 Индикаторы и дисплеи

Клавиши изменения

уровня программирования

Индикация

параметра

ΠNº4

Светодиодные индикаторы сигнализируют о режиме работы, выбранной процедуре и ошибках. На цифровые семисегментные индикаторы выводятся номера и значения параметров.

<u>Дисплей</u>	Назначение дисплея в режиме программирования
• КАНАЛ (№)	Индицирует номер уровня программирования.
• ПАРАМЕТР	Индицирует номер выбранного параметра.
• ЗАВДАННЯ	Индицирует значение параметра программирования или конфигурации.
• ВИХІД	На данный дисплей выводятся значения вспомогательных параметров.
<u>Индикатор</u>	Назначение индикатора в режиме программирования
Индикатор • ПР	Назначение индикатора в режиме программирования Светится, если контроллер находится в режиме ПРОГРАММИРОВАНИЕ. Не светится, если контроллер находится в режиме РАБОТА.
	Светится, если контроллер находится в режиме ПРОГРАММИРОВАНИЕ.

5.1.2 Клавиатура

Клавиши используются для выбора уровня программирования, режимов, для изменения параметров, запуска тестов и т.д.

Клавиша или комбинация

Назначение клавиш в режиме программирования

Комбинация клавиш [ひ] Меню + [№кн ↓]

Используется для перехода в режим программирования. Пароль для входа в режим программирования «0002».

О переходе в режим ПРОГРАММИРОВАНИЕ свидетельствует свечение индикатора ПР.

При этом в режиме программирования функциональные блоки не выполняются и в контроллере можно изменять все запрограммированные параметры, блоки, конфигурацию, константы и т. д.

Комбинация клавиш [ひ] Меню + [№кн ↑]

Используется для перехода в режим РАБОТА.

При переходе в режим РАБОТА индикатор ПР гаснет и засветится индикатор РБ.

В режиме работы можно контролировать сигналы и параметры, но никакие параметры кроме коэффициентов изменять нельзя.

• [℧] Меню

В режиме ПРОГРАММИРОВАНИЕ данная клавиша выполняет функцию отмены выполненных действий, операций.

«[Љ] Меню» – клавиша отмены. Нажатие этой клавиши сбрасывает вызванные параметры, оставляя на дисплее лишь первый параметр. Если клавиша «[Љ] Меню» нажимается до последнего нажатия клавиши «[Љ] Ввід», установленные параметры в память не вводятся.

• [∜] Ввід

Клавиша предназначена для подтверждения выполняемых действий, операций и для фиксации вводимых значений. Например, фиксация ввода измененного значения параметра, а также продвижение по уровням программирования и т.п.

«[섛] Ввід» – клавиша имеет двойное назначение: она используется для выбора нужного параметра и для ввода установленных параметров в память. В каждой операции по программированию, настройке и контролю используется несколько параметров. Вызов этих параметров на дисплей осуществляется последовательно: при каждом нажатии клавиши «[섛] Ввід» на соответствующий дисплей вызывается очередной параметр, участвующий в данной операции. Этот параметр при необходимости может изменяться с помощью клавиш «[▲]», «[▼]».

После того, как все параметры, участвующие в данной процедуре, будут вызваны и установлены, очередное (последнее нажатие клавиши «[ℯу] Ввід» сбрасывает вызванные параметры.

Кроме того, в режиме программирования это последнее нажатие клавиши «[ᢞ] Ввід» вводит установленные параметры в память.

- [№кн ↑]
- Используется для изменения номера уровня меню в сторону увеличения.
- [№кн ↓]
- Используется для изменения номера уровня меню в сторону уменьшения.
- [Завд.]
- Используется для инверсии входного сигнала при конфигурировании связей на уровне 3.
- [▲] Знач.

Клавиша "больше". При каждом нажатии этой клавиши осуществляется увеличение значения изменяемого параметра. При удерживании этой клавиши в нажатом положении увеличение значений происходит непрерывно.

• [▼] Знач.

Клавиша "меньше". При каждом нажатии этой клавиши осуществляется уменьшение значения изменяемого параметра. При удерживании этой клавиши в нажатом положении уменьшение значений происходит непрерывно.

Примечание. При изменении значений параметров действуют режимы ускоренного изменения значений – см. рис. 4.2.

5.1.3 Режим программирования и работы

Контроллер может находиться в одном из двух режимов: программирования (ПР) или работы (РБ). В режиме программирования программа контроллера не работает. В этом режиме состояние всех его выходов, таймеров, счетчиков и ячеек накопления заморожено, а на лицевой панели светится индикатор ПР. Исключением является только таймер реального времени.

В режиме программирования можно изменять все параметры, как контроллера в целом, так и функциональных блоков.

В режиме работы светится светодиодный индикатор РБ (ПР не светится).

В режиме работы контроллер включен в режим управления. При переходе в этот режим работа контроллера начинается с того состояния, в котором он находился в момент перехода в режим программирования (это верно лишь для той части структуры функциональных блоков, которая не менялась в режиме программирования).

В режиме работы можно контролировать параметры и выхода блоков, а также изменять параметры. При переходе из режима «программирование» в режим «работа» контуры регулирования включаются в работу безударно.

При наличии отказов в контроллере невозможно перейти в режим работы контроллера до полного устранения отказов.

5.2 Технологическое программирование и тестирование

5.2.1 Процедура программирования

Вызов режима ПРОГРАММИРОВАНИЕ защищен паролем и осуществляется из режима РАБОТА длительным, более 3-х секунд, нажатием комбинации клавиш **Меню** + [№кн ↓].

После этого на дисплей ПАРАМЕТР выводятся символы "PASS" – ввод пароля. На дисплей ЗАВДАННЯ выводится мигающее значение пароля: «**0000**».

С помощью клавиши ▲ ввести пароль: «0002» и кратковременно нажать клавишу [생].

Если пароль введен не верно – прибор остается в режиме РАБОТА.

Если пароль введен верно - то прибор перейдет в режим ПРОГРАММИРОВАНИЕ.

Переход в режим ПРОГРАММИРОВАНИЯ указывает светящийся индикатор ПР.

В режиме программирования задаются все программируемые параметры контроллера, определяющие его функциональную структуру.

Элементы лицевой панели (дисплеи, индикаторы, клавиши) в режиме программирования представлены в разделе 5.1. Формат индикации информации на дисплеях при программировании и тестировании приведен на рис. 5.1.

В контроллере имеются восемь процедур (и соответственно восемь уровней) программирования, которые представлены ниже. Каждая процедура программирования имеет свой уровень, индицируемый на дисплее «№» (КАНАЛ). В последующих разделах приводится подробное описание каждой процедуры технологического программирования и тестирования.

Состояние дисплея «№» (КАНАЛ) Номер уровня	Наименование уровня и процедуры программирования	
1	Настройка количества функциональных блоков, количества контуров регулирования, программных задатчиков и количества пользовательских панелей индикации и управления	
2	Программируются функциональные блоки в программе пользователя, номер, тип блока, базовый адрес параметров и модификатор количества входов	
3	Программируются связи функционального блока в программе пользователя	
4	Настройка параметров функциональных блоков	
5	Тестирование дискретных и аналоговых входов-выходов, калибровка аналоговых входов и калибровка аналоговых выходов	
6	Системные параметры (версия ПО, свободная память программ, свободная память данных, сетевой адрес, скорость сетевого обмена, тайм-аут)	
7	На данном уровне производится контроль отказов при программировании	
8	На данном уровне производится сохранение программы пользователя, настроек и параметров в энергонезависимой памяти контроллера	

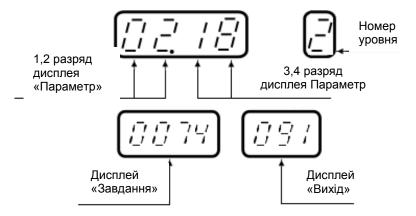


Рисунок 5.2 - Индикация параметров настройки в режиме программирования

5.2.1.1 Настройка количества блоков

На данном уровне программирования устанавливается необходимое количество функциональных блоков, количество контуров регулирования (регуляторов), количество программных задатчиков, а также количество пользовательских панелей индикации и управления.

Таблица 5.1 – Программирование контролера

Дисплей «№» КАНАЛ	Дисплей І	Дисплей ПАРАМЕТР		Дисплей
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	ЗАВДАННЯ	вихід
1	00 98 Количество функциональных блоков	00 09 Количество контуров регулирования	0000 0009 Количество программных задатчиков	000 009 Количество пользовательских панелей

После ввода вышеперечисленной информации в контроллере формируется исполнительный программный модуль программы пользователя, загруженной с компьютера или введенной с передней панели.

При вводе значения «00» в 1-м и 2-м разряде дисплея ПАРАМЕТР производится очистка программы пользователя.

Внимание! Данную операцию необходимо выполнить перед записью новой программы в контролер.

При вводе параметров данного уровня возможно свечение индикатора отказ ОТ, в данном случае необходимо проверить правильность программирования функциональных блоков, программирование связей блоков, установку и настройку параметров, или подтвердить еще раз все значения данного уровня.

5.2.1.2 Программирование функциональных блоков

На данном уровне программируется номер функционального блока в программе пользователя, тип блока (согласно библиотеке функциональных блоков), базовый адрес параметров и модификатор количества входов и/или параметров.

Таблица 5.2 – Программирование контролера

Дисплей «№» КАНАЛ	Дисплей (Дисплей ПАРАМЕТР Дисплей		Дисплей
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	ЗАВДАННЯ	вихід
2	00 98 Номер блока	00 99 * Тип блока	0000 0600 Базовый адрес параметров	001 012 ** Модификатор количества входов и параметров.

^{*} См. библиотеку функциональных блоков.

5.2.1.3 Программирование связей

На данном уровне программируются связи функционального блока в программе пользователя.

Таблица 5.3 – Программирование контролера

Дисплей «№» КАНАЛ	Дисплей І	ПАРАМЕТР	Дисплей	Дисплей	
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	ЗАВДАННЯ	вихід	
3	00 98	01 99 *	0000 0099	01 12 ** или -0112 **	
	Номер блока	Номер входа	Номер блока	Номер выхода **	

7 00 ... N — все входа блоков (N — входов) (N+1) ... (N+M) — все свойства блока (М — свойств).

В каждого блока должны быть связаны все входа, иначе будет выдаваться сигнал отказа (отказ №6 – не подключенный вход). Также можно связывать и свойства блока, для того чтобы в каждом цикле программы записывать в свойство данного блока значение нужного выхода другого блока.

** При программировании связей, после ввода значения номера выхода на дисплее ВИХІД, нажатие клавиши [Завд.] устанавливает инверсию данной связи, что отображается символом «-».

^{**} Для блоков, которые не имеют модификатора, этот параметр всегда равен 001.

5.2.1.4 Настройка параметров

На данном уровне производится настройка параметров функциональных блоков.

Таблица 5.4 – Программирование контролера

Дисплей «№» КАНАЛ	Дисплей І	ПАРАМЕТР	Дисплей	Дисплей ВИХІД
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	ЗАВДАННЯ	
	00 98	01 99	-9999 9999	000, 001
4	Номер блока	Номер параметра	Значение параметра	Разрешение изме- нения параметров*

^{*} Установка данного значения разрешает или запрещает производить изменение данного параметра в режиме РАБОТА. Для измерения параметра нужно в режиме работы контроллера перейти на панель индикации и редактирования параметров функциональных блоков (см. п. 4.7).

Состояние данного значения:

000 – запрещено изменять данный параметр в режиме РАБОТА,

001 – разрешено изменять данный параметр в режиме РАБОТА.

5.2.1.5 Тестирование и калибровка входов-выходов

На данном уровне производится тестирование дискретных и аналоговых входов-выходов контроллера, а также автоматическая и ручная калибровка аналоговых входов.

Таблица 5.5 – Программирование контролера

Дисплей «№» КАНАЛ	Дисплей ПАРАМЕТР		Дисплей ЗАВДАННЯ	Дисплей	
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	Диотополодити	вихід	
	01	Номер входа	хххх – значение входного сигнала (%)	000	
	Тест аналоговых		хххх – значение входного сигнала,	001	
	входов AI1-AI4	01 – 1-й вход	что соответствует началу шкалы (%)		
			хххх – значение входного сигнала, что соответствует концу шкалы (%)	002	
		02 – 2-й вход	Аналогично 1-му входу		
		03 – 3-й вход	Аналогично 1-му входу		
		04 – 4-й вход	Аналогично 1-му входу		
		05-08	В данной модели контроллера не испол	ьзуется	
	02 Тест	Номер выхода 01 – 1-й выход	хххх – изменение значения выхода (▲, ▼)	000	
	аналогового		хххх – смещение выхода, в %	001	
	выхода АО		хххх – коэффициент усиления, в ед.	002	
	03 Номер входа		0000 – вход отключен	000	
	Тест дискретных	04 – 1-й вход	0001 – вход включен (подано =24В)		
	входов DI4-DI27	05 – 2-й вход	Аналогично 1-му входу		
		06 – 3-й вход	Аналогично 1-му входу		
		07 – 4-й вход	Аналогично 1-му входу		
5		27 – 24-й вход	Аналогично 1-му входу		
3	04	Номер выхода	0000 – выход отключен	000	
	Тест дискретных	06 – 1-й выход	0001 – выход включен		
	выходов DO6-	07 – 2-й выход	Аналогично 1-му выходу		
	DO29	08 – 3-й выход	Аналогично 1-му выходу		
		09 – 4-й выход	Аналогично 1-му выходу		
		29 – 24-й выход	Аналогично 1-му выходу		
	05 Автоматическая	Номер входа	хххх – Состояние физического входа Автоматическая калибровка не	000	
	калибровка	01 – 1-й вход	проводится		
	аналоговых		хххх – Состояние физического входа	001	
	входов AI1-AI4		Автоматическая калибровка начала		
			шкалы		
			хххх – Состояние физического входа Автоматическая калибровка конца	002	
			шкалы		
		02 – 2-й вход	Аналогично 1-му входу		
		03 – 3-й вход	Аналогично 1-му входу		
		04 – 4-й вход	Аналогично 1-му входу		
		05-08	В данной модели контроллера не испол	ьзуется	

Дисплей «№» КАНАЛ	Дисплей ПАРАМЕТР		_ Дисплей ЗАВДАННЯ	Дисплей	
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	Anomor Charles	вихід	
	06 Ручная калибровка начала шкалы аналоговых входов Al1-Al4	Номер входа 01 — 1-й вход 02 — 2-й вход 03 — 3-й вход 04 — 4-й вход 05-08	хххх – Состояние физического входа Ручная калибровка начала шкалы Аналогично 1-му входу Аналогично 1-му входу Аналогично 1-му входу	000 – не сохранять 001 - сохранять	
	07 Ручная калибровка конца шкалы аналоговых входов AI1-AI4	Номер входа 01 — 1-й вход 02 — 2-й вход 03 — 3-й вход 04 — 4-й вход 05-08	В данной модели контроллера не исполі хххх — Состояние физического входа Ручная калибровка конца шкалы Аналогично 1-му входу Аналогично 1-му входу Аналогично 1-му входу В данной модели контроллера не исполі	000 – не сохранять 001 - сохранять	
5	98 Ручная калибровка начала шкалы аналогового выхода АО	Номер выхода 01 – 1-й выход	хххх – Значение, подаваемое на выход при калибровке начала шкалы	000 – не сохранять 001 - сохранять	
	Ручная калибровка конца шкалы аналогового выхода АО	Номер выхода 01 – 1-й выход	хххх – Значение, подаваемое на выход при калибровке конца шкалы	000 – не сохранять 001 - сохранять	
	10 Калибровка таймера реального времени	01 - секунды 02 - минуты 03 - часы 04 - день недели 05 - число месяца 06 - месяц 07 - год	0000 - 0059 0000 - 0059 0000 - 0023 0001 - 0007 0001 - 0031 0001 - 0012 0000 - 0099 (2000 - 2099)	000 – не сохранять 001 - сохранять	

5.2.1.6 Системные параметры

На данном уровне производится настройка системных параметров контроллера и контроль ошибок.

Таблица 5.6.1 – Программирование контролера

Дисплей «№» КАНАЛ	Дисплей ПАРАМЕТР		Дисплей ЗАВДАННЯ	Дисплей
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	дистиси одрдании	вихід
6	01 Системные параметры	01 Версия программного обеспечения	00.xx где: 00 – код модели контроллера xx – номер версии	000
v		02 Системный код модели (см. стр. 7, табл.1.4.1)	0031 — МИК-53H-21(23,31,41) 0032 — МИК-53H-32 0033 — МИК-53H-22(24,33,42)	000

Продолжение та	аблицы 5.6.1 – Програм	имирование контролера		
Дисплей «№» КАНАЛ	Дисплей	ПАРАМЕТР	Дисплей ЗАВДАННЯ	Дисплей
Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд		вихід
	02	01	0000 – 0255	000
	Параметры	Сетевой адрес	(0000 – отключен от сети)	
	сетевого обмена	02	0000 – 0012, где:	000
		Скорость сетевого	0000 – 2400	
		обмена, бит/сек	0001 – 4800	
			0002 – 9600 0003 – 14400	
			0003 - 14400	
			0005 – 28800	
			0006 – 38400	
			0007 – 57600	
			0008 – 76800	
			0009 – 115200	
			0010 – 230400	
			0011 – 460800	
		03	0012 – 921600	000
		Тайм-аут кадра	хххх см. раздел 5.4, таблица 5.1	000
		запроса в	см. раздел от, таолица о. т	
		системных тактах		
		1 такт = 250 мкс		
		04	0000 - Modbus RTU (стандарт «Микрол»)	000
		Протокол обмена**	0001 - Modbus RTU (стандарт «Modicon»)	
6		05	0000 – «3-2-1-0»	000
		Порядок следования**	0001 – «1-0-3-2»	
		06	0002 – «0-1-2-3» 0000 – без контроля четности	000
		Контроль четности	0001 – контроль по четности	000
		Kempens lemeem	0002 – контроль по нечетности	
		07	0000 – один стоп-бит	000
		Стоп-бит	0002 – два стоп-бита	
	03	01	xxxx	000
	Ресурс системы	Свободная память	0000 – 0400 * ¹	
		программ		000
		02	xxxx 0000 – 0800 * ¹	000
		Свободная память выходных	0000 – 0800	
		регистров		
		03	xxxx	000
		Свободная память	0000 – 0640 * ¹	
		параметров		
		(свойств)		
	04	00-99	0000 – 0002	000 – 999
	Системные	Номер ошибки	Тип ошибки	Код
	ошибки	(количество	См. табл.7.6.2	ошибки
		ошибок)		См. табл. 5.6.2
				ე.ಠ.∠

^{*&}lt;sup>1</sup> В данном параметре указывается количество записей, одна запись равна 4 байта (например, номер блока, номер входа, номер блока, номер входа).

Типы (коды) системных и программируемых ОШИБОК, индицируемых на уровне 6, подуровня 04, указанных в таблице 5.6.1

Таблица 5.6.2 – Типы системных и программируемых ошибок контроллера

Тип ошибки	Код ошибки	Причина ошибки	Метод устранения ошибки
	01	Ошибка аналогового входа AI1 Сигнал на входе вышел за диапазон шкалы	Устранить причину выхода сигнала за диапазон шкалы (или калибровать шкалу)
01			
	04	Ошибка аналогового входа AI4 Сигнал на входе вышел за диапазон шкалы	

Π подолжение таблины 5.6.2 —	Типы системных и программируемых	OUILIFOR VOUMBORREDS

Ī		01	Ошибка при обращении к внешней	1. Выключить, а затем включить контроллер
	02		энергонезависимой памяти EEPROM	2. Заменить модуль расширения
	02	02	Ошибка при обращении к таймеру	2. Заменить модуль расширения1. Выключить, а затем включить контролле
			реального времени модуля процессора	

5.2.1.7 Контроль отказов

На данном уровне производится контроль отказов при программировании.

Таблица 5.7.1 – Программирование контролера

Дисплей «№»	Диспле	й ПАРАМЕТР		Дисплей ВИХІД	
КАНАЛ Номер уровня	1-й, 2-й разряд	3-й, 4-й разряд	Дисплей ЗАВДАННЯ		
	00 99	01 05	XXXX	xxx	
	Номер отказа	Тип (код) отказа – см.	Служебная	Служебная информация	
	(количество	табл.5.7.2	информация		
	отказов)	06	0000-0099	0000-0099	
		Тип (код) отказа – см.	Номер блока	Номер входа (не	
		табл.5.7.2		подключенного)	
7		07	0000-0099	0000-0099	
		Тип (код) отказа – см.	Номер блока ^{*1}	Номер блока ^{*1}	
		табл.5.7.2			
		08	0000-0099	0000-0099	
				Номер входа блока	
		табл.5.7.2		программируемого	
				отказа	

^{*1} На данных дисплеях указывается номера блоков, в которых на этапе программирования произошло «перекрытие» областей адресов параметров.

Перейти в режим «работы» при наличии отказов невозможно. Их нужно исправить в режиме программирования.

Ошибки (табл. 5.6.2) можно видеть и в режиме «работы». Для этого нужно перейти в режим панели отказов и ошибок:

При этом будет возможность просмотреть по порядку коды всех ошибок. На дисплее будет видно количество ошибок, номер ошибки, тип и код ошибки (см. рисунок 5.3).

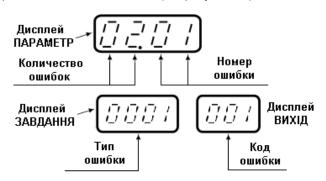


Рисунок 5.3 - Индикация ошибок контроллера

Типы (коды) ОТКАЗОВ, индицируемых на уровне 7, указанных в таблице 5.7.2

Таблица 5.7.2 – Типы отказов контроллера

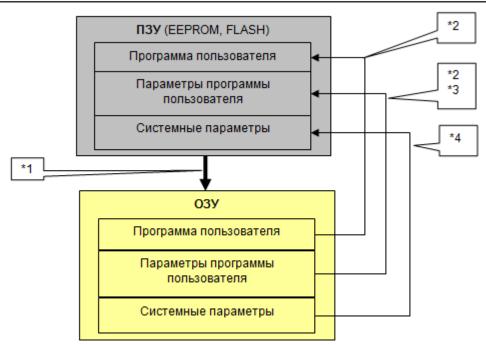
Код отказа	Причина отказа	Метод устранения отказа
01	Отказ энергонезависимой внешней EEPROM	1. Выключить, а затем включить контроллер
02	Ошибка при тестировании и диагностике ОЗУ (RAM, оперативной памяти) процессора на этапе начальной инициализации контроллера	1. Выключить, а затем включить контроллер

Продолжение г	таблицы 5.7.2 – Типы отказов контроллера			
03	Не соответствие контрольной суммы CRC области редактирования конфигурации и контрольной суммы CRC исполнительного модуля	1. Найти и устранить несоответствие в программе либо, если не нужно устранять несоответствие - выключить, а затем включить контроллер.		
		2. Выполнить ввод системных параметров программы пользователя (уровень 1). При этом загрузка на уровне 1 контролирует объем используемой памяти, связи блоков и саму программу пользователя.		
04	Не соответствие контрольной суммы CRC загруженной программы пользователя и контрольной суммы CRC сохраненной программы пользователя	Выполнить операцию сохранения (см. уровень 8), если несоответствие должно быть сохранено. Если не нужно устранять несоответствие -		
05	Ошибка контрольной суммы CRC исполняемой программы пользователя в ОЗУ (осуществление контроля во время работы)	выключить, а затем включить контроллер. 1. Выключить, а затем включить контроллер для инициализации тестов начальной загрузки контроллера		
06	Отказ программы пользователя Не подключенный вход	1. При возникновении данного отказа на индикации указывается номер блока и номер неподключенного входа. Найти и устранить ошибку конфигурации связей функциональных блоков.		
07	Неправильное распределение базовых адресов функциональных блоков (совпадение базовых адресов в нескольких блоках)	1. При возникновении данного отказа на индикации указывается номера блоков с совпавшими базовыми адресами. Найти и устранить ошибку конфигурации функциональных блоков.		
08	Программируемый отказ	1. Локализовать неисправность согласно запрограммированной логике работы формирования программируемых отказов		

5.2.1.8 Сохранение программы пользователя и настроек в энергонезависимой памяти

На данном уровне производится сохранение программы пользователя, настроек и параметров в энергонезависимой памяти контроллера.

Таблица 5.8 – Программирование контролера


Дисплей «№» КАНАЛ	Дисплей І	ПАРАМЕТР	Дисплей	Дисплей	
Номер уровня			ЗАВДАННЯ	вихід	
8	00 98 Индикация заданного количества блоков	01 98 Индикация задействованного количества блоков	0000 — не записывать в энергонезависимую память 0001 — записать в энергонезависимую память	000	

Примечание.

. Изменение в режиме РАБОТА некоторых параметров НЕ требует команды сохранения на уровне 8.

- 1) Оперативных параметров (режимы работы регуляторов, программных задатчиков, значение заданной точки регулятора, значение аналогового выходного воздействия регулятора в ручном режиме).
 - 2) Параметров функциональных блоков, изменение которых разрешено на уровне 4.
- 3) Изменение параметров функциональных блоков по сети (в режиме РАБОТА и в режиме ПРОГРАММИРОВАНИЕ).
- 4) Некоторые выхода блоков также остаются неизменными после выключения контроллера. Это выхода блоков накопления (счетчик и интегратор).

Запоминание следующих параметров происходит автоматически:

- *1. Копирование из ПЗУ в ОЗУ происходит после включения питания прибора, а также, если по какой-то причине испорчена рабочая программа пользователя.
- *2. Запись программы пользователя в ПЗУ происходит при сохранении на уровне программирования 8.
- *3. При работе контроллера запись параметров программы в ПЗУ происходит только для определенных блоков. Запись производится циклически по времени или при изменении свойства блока (при изменении свойств с программного пакета ALFA свойства автоматически записываются в ПЗУ и в ОЗУ, при изменении параметров из передней панели контроллера свойства записываются только в ОЗУ, если нужно чтобы измененные свойства остались в силе и при следующем запуску контроллера, нужно записать программу на 8 уровне).
- *4. Запись в ПЗУ производится автоматически. Под системными параметрами разумеется 6 уровень режима программирования контроллера.

6 Указание мер безопасности

- 6.1 К эксплуатации контроллера МИК-53H допускаются лица, имеющие разрешение для работы на электроустановках напряжением до 1000 В и изучившие руководство по эксплуатации в полном объеме.
- 6.2 Эксплуатация контроллера МИК-53H разрешается при наличии инструкции по технике безопасности, утвержденной предприятием-потребителем в установленном порядке и учитывающей специфику применения контроллера на конкретном объекте. При эксплуатации необходимо соблюдать требования действующих правил ПТЭ и ПТБ для электроустановок напряжением до 1000В.
- 6.3 Контроллер МИК-53H должен эксплуатироваться в соответствии с требованиями действующих "Правил устройства электроустановок" (ПУЭ).
- 6.4 Используйте напряжения питания (220В/50Гц переменного тока или 24В постоянного тока), соответствующие требованиям к электропитанию для контроллера МИК-53Н. При подаче напряжения питания необходимое его значение должно устанавливаться не более чем за 2-3 сек.
- 6.5 Все монтажные и профилактические работы должны проводиться при отключенном электропитании.
 - 6.6 Запрещается подключать и отключать соединители при включенном электропитании.
- 6.7 Тщательно производите подключение с соблюдением полярности выводов. Неправильное подключение или подключение разъемов при включенном питании может привести к повреждению электронных компонентов прибора.
 - 6.8 Не подключайте неиспользуемые выводы.
- 6.9 При разборке прибора для устранения неисправностей контроллер МИК-53Н должен быть отключен от сети электропитания.
- 6.10 При извлечении прибора из корпуса не прикасайтесь к его электрическим компонентам и не подвергайте внутренние узлы и части ударам.
- 6.11 Располагайте контроллер МИК-53H как можно далее от устройств, генерирующих высокочастотные излучения (например, ВЧ-печи, ВЧ-сварочные аппараты, машины, или приборы использующие импульсные напряжения) во избежание сбоев в работе.

7 Порядок установки и монтажа

7.1 Общие указания

Контроллер МИК-53H рассчитан на монтаж на рельс DIN35x7.5 EN50022 согласно рисунку 7.1.

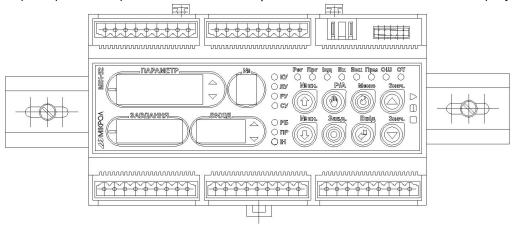


Рисунок 7.1 – Положение МИК-53H при монтаже не DIN-Рельс

7.2 Требования к месту установки

Контроллеры МИК-53Н должны устанавливаться в закрытом взрывобезопасном пожаробезопасном помещении.

Условия эксплуатации контроллеров:

- температура окружающего воздуха от минус 40 °C до плюс 70 °C;
- относительная влажность от 40 до 95 %;
- атмосферное давление от 85 до 106,7 кПа;
- должна быть защита от влияния внешних магнитных полей с напряженностью более 400 А/м;
- должна отсутствовать вибрация мест крепления с частотой выше 25 Гц и с амплитудой более 0.1 мм;
- окружающая среда не должна содержать агрессивных паров и газов.

7.3 Соединение контроллера с внешними устройствами

Кабельные связи, соединяющие контроллеры МИК-53H с датчиками и исполнительными механизмами, подключаются к ним через разъемы подключения цепей ввода-вывода согласно проекту автоматизации в виде кабельных связей и жгутов вторичной коммутации.

Подключение осуществляется с помощью соединителей на основе безвинтовых плоско-пружинных клемм. Типы проводников, подключаемые к безвинтовым плоско-пружинным клеммам: одножильные, многожильные, многожильные тонкопроволочные (в том числе с уплотненно-зажатыми жилами), тонкопроволочные с концевой втулкой или со штифтовым кабельным наконечником. Характеристики разъемных соединителей (разъемов-клемм) и клемм, устанавливаемых на прибор:

• сечение подключаемых проводников
• глубина зачистки проводника (длина втулки, штифта)
• максимальное напряжение
• напряжение изоляции между клеммами
• максимальный ток через клемму

• 12 A.

Прокладка кабелей и жгутов должна отвечать требованиям действующих «Правил устройства электроустановок» (ПУЭ). Не допускается объединять в одном кабеле (в жгуте) цепи, по которым передаются входные аналоговые и сильноточные выходные дискретные (импульсные) сигналы.

Экранировать входные и выходные дискретные (импульсные) кабельные цепи не требуется. Необходимость в экранировании кабеля, по которым передается аналоговая информация, зависит от длины связей и от уровня помех в зоне прокладки кабеля.

Сетевое напряжение электропитания контроллеров МИК-53Н подается черев внешний силовой щит, оборудованный автоматическими выключателями.

Блоки контроллеров МИК-53H, датчики и исполнительные устройства, входящие в один контур регулирования или управления, должны быть отнесены («привязаны») к одному автоматическому выключателю

Параметры сети электропитания – однофазная сеть переменного тока напряжением от 110В до 242В и частотой (50 ± 1) Гц или от 20 до 28 В, в зависимости от заказа.

Все блоки контроллеров МИК-53H должны быть заземлены проводом сечения не менее 1,5 мм². Схемы внешних соединений приводятся в главе 10.

Рисунок 7.2 – Внешний вид и габаритные размеры контроллера МИК-53Н

8 Организация ввода-вывода информации. Внешние соединения

8.1 Схема внешних соединений контроллера МИК-53H-21

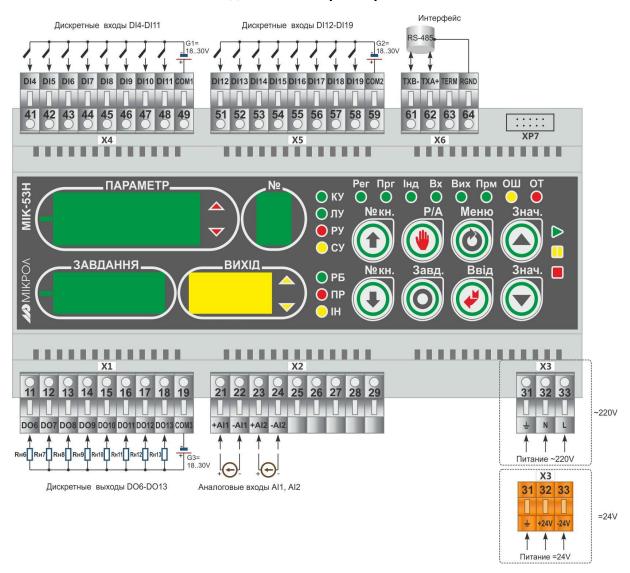


Рисунок 8.1 - Нумерация клемм и сигналы контроллера МИК-53Н-21

8.2 Схема внешних соединений контроллера МИК-53H-22

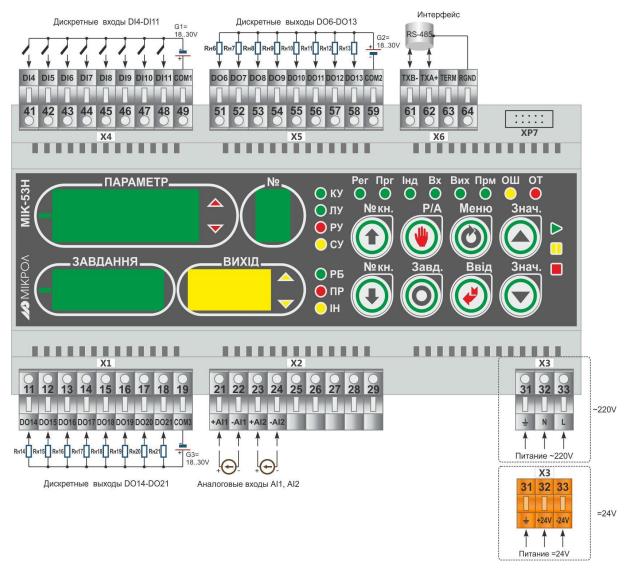


Рисунок 8.2 - Нумерация клемм и сигналы контроллера МИК-53Н-22

8.3 Схема внешних соединений контроллера МИК-53H-23

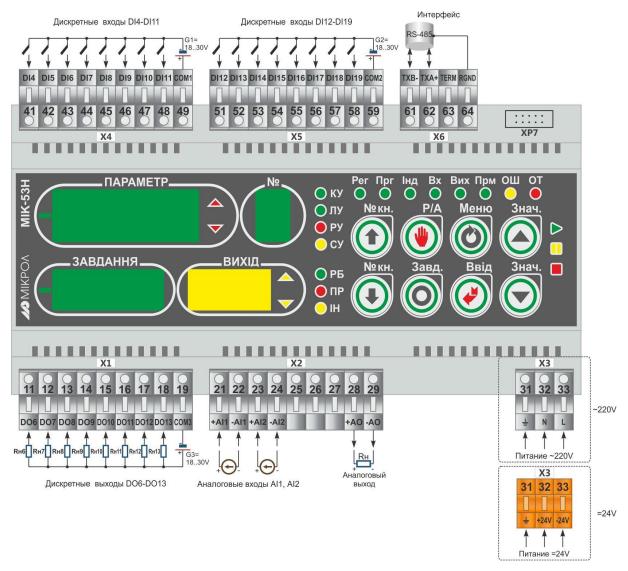


Рисунок 8.3 - Нумерация клемм и сигналы контроллера МИК-53Н-23

8.4 Схема внешних соединений контроллера МИК-53H-24

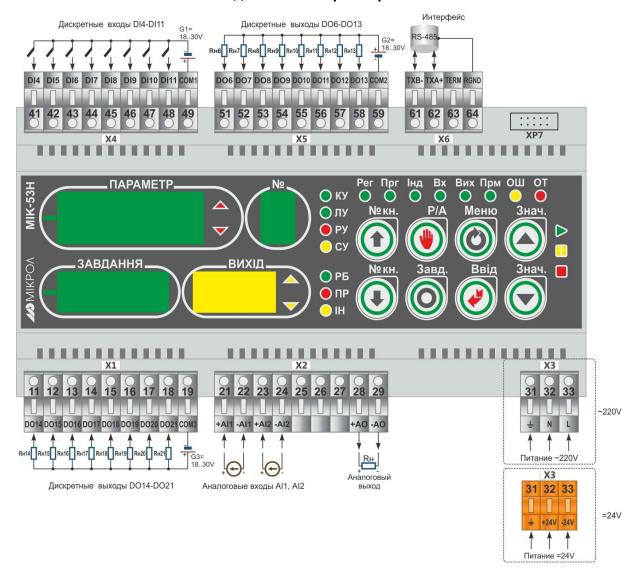


Рисунок 8.4 - Нумерация клемм и сигналы контроллера МИК-53Н-24

8.5 Схема внешних соединений контроллера МИК-53H-31

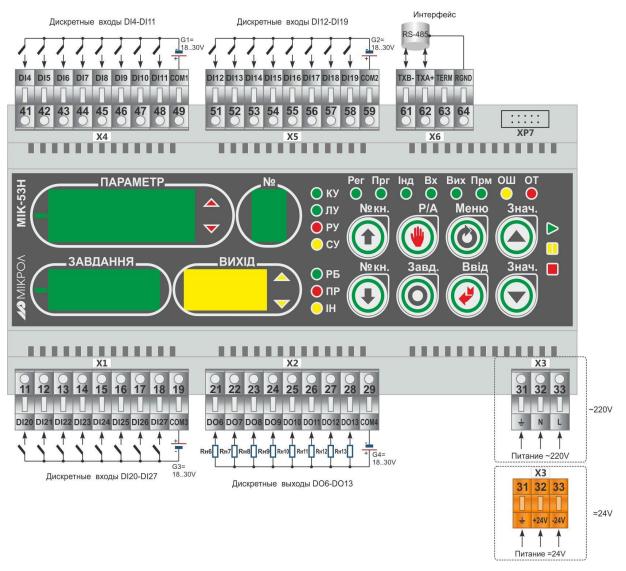


Рисунок 8.5 - Нумерация клемм и сигналы контроллера МИК-53Н-31

8.6 Схема внешних соединений контроллера МИК-53Н-32

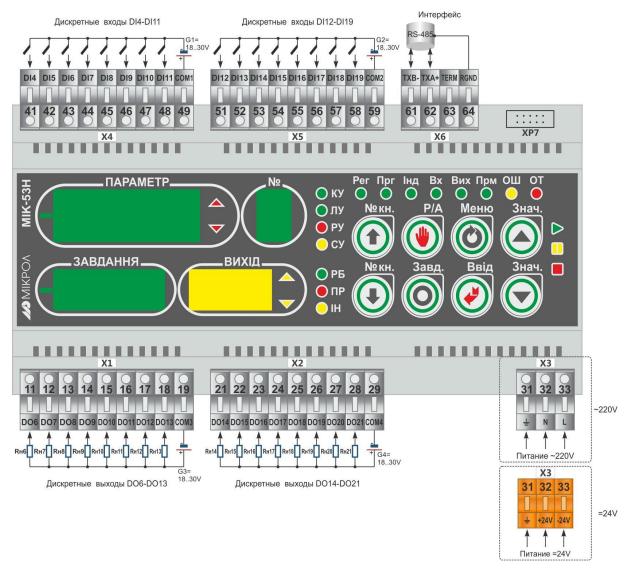


Рисунок 8.6 - Нумерация клемм и сигналы контроллера МИК-53Н-32

8.7 Схема внешних соединений контроллера МИК-53H-33

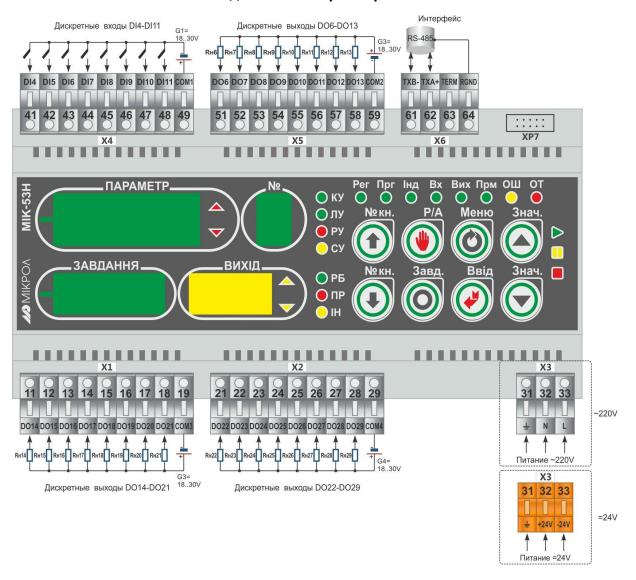


Рисунок 8.7 - Нумерация клемм и сигналы контроллера МИК-53Н-33

8.8 Схема внешних соединений контроллера МИК-53H-41

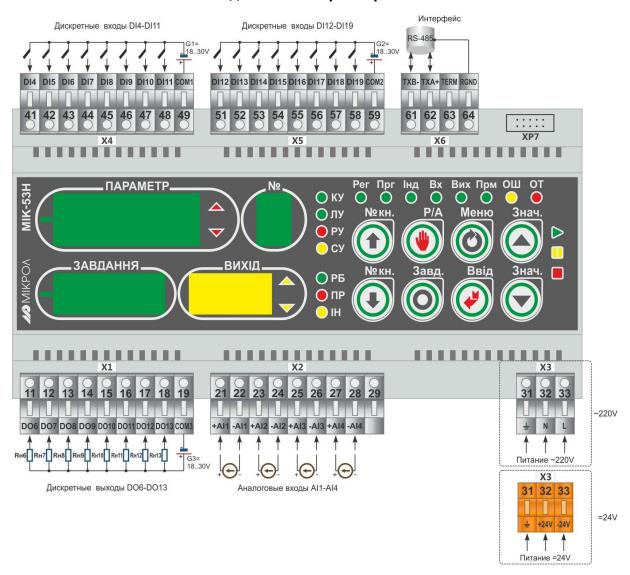


Рисунок 8.8 - Нумерация клемм и сигналы контроллеров МИК-53Н-41

8.9 Схема внешних соединений контроллера МИК-53Н-42

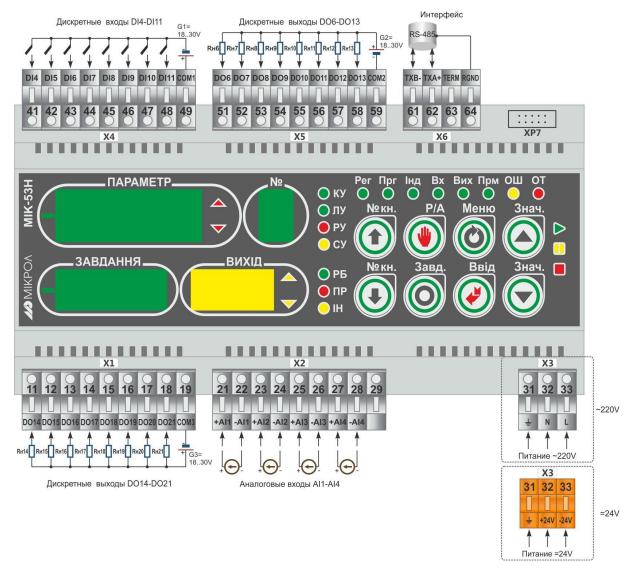


Рисунок 8.9 - Нумерация клемм и сигналы контроллера МИК-53Н-42

8.10 Внешние соединения контроллеров МИК-53Н

8.10.1 Подключение аналоговых входов

Положение перемычек на плате контроллера для настройки различных типов входных сигналов приведено в таблице 8.1.

Преобразование сигналов постоянного тока 0-5 мA, 0(4)-20 мA или сигналов постоянного напряжения 0-10 В осуществляется с помощью нормирующих резисторов, входящих в состав изделия. Выбор сигнала 0-20 мA или 4-20 мA осуществляется программно с помощью функционального блока аналогового ввода.

Каждый аналоговый вход гальванически изолирован от других аналоговых входов и других цепей контроллера.

Таблица 8.1 – Положение перемычек JP1-JP4 на процессорной плате для настройки аналоговых входов AI1 – AI4

Тип входного	Положения перемычек					
сигнала	JP1 - Bход Al1	JP2 - Bход Al2	JP3 - Вход Al3	JP4 - Вход Al4		
0-5 мА	[1-2],[7-8]	[1-2],[7-8]	[1-2],[7-8]	[1-2],[7-8]		
0-20 мА, 4-20 мА	[1-2],[5-6]	[1-2],[5-6]	[1-2],[5-6]	[1-2],[5-6]		
0-10 B	[2-4],[5-7]	[2-4],[5-7]	[2-4],[5-7]	[2-4],[5-7]		

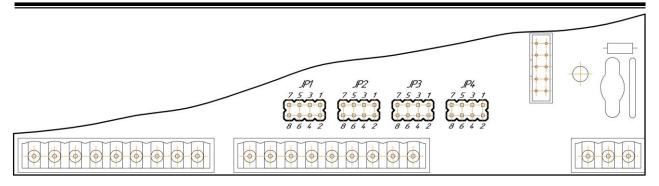


Рисунок 8.10.1 – Положение перемычек аналоговых входов

8.10.2 Подключение дискретных входов

Дискретные входы соединены в группы из восьми входов с общим "минусом" и гальванически изолированы между собой и от других цепей контроллера.

Для питания групп дискретных входов (датчиков) требуется внешнее напряжение 24 В постоянного тока с током нагрузки не менее 80 мА.

8.10.3 Подключение дискретных выходов

Дискретные выходы соединены в группы из восьми выходов и гальванически изолированы от других цепей контроллера.

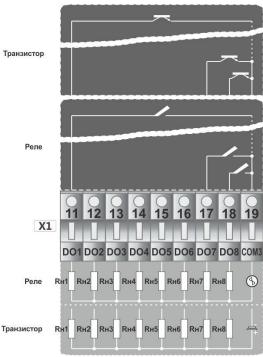
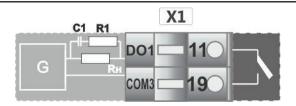


Рисунок 8.10.2 – Схема подключения дискретных выходов контроллера МИК-53Н

Примечание. Рисунок 8.10.2 иллюстрирует схему подключения группы дискретных выходов (выходы DO1÷DO8) контроллера МИК-53H-21.


Для других контроллеров МИК-53Н подключение групп выходов аналогичное.

Рекомендации по подключению релейных выходов

В цепях переменного тока для подключения индуктивных нагрузок к дискретному релейному выходному сигналу рекомендуется использовать RC-демпфирующую цепочку.

Пример такой схемы изображен на рисунке 8.10.3.

Рекомендуется для цепей переменного тока напряжением 220 В вместо RC-цепочки использовать варистор CH2-1 на напряжение 420 В. Применение варистора позволяет предотвратить не только индуктивные наводки, но и погасить большие всплески сигнала, возникающие в силовых цепях питания от другого оборудования.

Rн – нагрузка;

G – источник питания переменного тока;

С1 – конденсатор, 022 мкФ, 600 В;

R1 – резистор 100 Ом, 0,5 Вт.

Рисунок 8.10.3 – Схема подключения индуктивной нагрузки к дискретному релейному выходному сигналу

Рекомендации по подключению транзисторных выходов

При подключении индуктивных нагрузок (реле, пускатели, контакторы, соленоиды и т.п.) к дискретным транзисторным выходам контроллера, во избежание выхода из строя выходного транзистора из-за большого тока самоиндукции, параллельно нагрузке (обмотке реле) необходимо устанавливать блокирующий диод VD — см. схему подключения 8.10.4. Внешний диод устанавливать на каждом канале, к которому подключена индуктивная нагрузка.

Тип устанавливаемого диода - КД209, КД258, 1N4004...1N4007 (или аналогичный), рассчитанный на обратное напряжение 100 В и прямой ток 0.5 А.

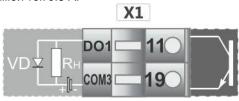


Рисунок 8.10.4 – Схема подключения индуктивной нагрузки к дискретному транзисторному выходному сигналу

8.10.4 Подключение интерфейса

- 1. К ПК может быть подключено до 32 устройств, включая преобразователь интерфейсов БПИ-485 или БПИ-52.
 - 2. Общая длина кабельной линии связи не должна превышать 1200 м.
 - 3. В качестве кабельной линии связи предпочтительно использовать экранированную витую пару.
 - 4. Длина ответвлений L₀ должна быть как можно меньшей.
- 5. К интерфейсным входам приборов, расположеным в крайних точках соединительной линии, необходимо подключить два терминальным резистора сопротивлением 120 Ом (R1 и R2). Подключение терминальных резисторов в блоке преобразования интерфейсов БПИ-485 или БПИ-52 см. в РЭ на БПИ-485 или БПИ-52.

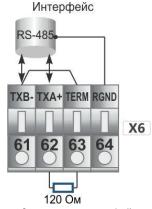


Рисунок 8.10.5 – Схема подключения интерфейса к контроллеру МИК-53Н

Примечания.

- 1. Все ответвители приемо-передатчиков, присоединенные к одной общей передающей линии, должны согласовываться только в двух *крайних* точках. Длина ответвлений должна быть как можно меньшей.
- 2. Необходимость экранирования кабелей, по которым передается информация, зависит от длины кабельных связей и от уровня помех в зоне прокладки кабеля.
- 3. Применение экранированной витой пары в промышленных условиях является предпочтительным, поскольку это обеспечивает получение высокого соотношения сигнал/шум и защиту от синфазной помехи.

9 Подготовка к работе. Порядок работы

9.1 Общие указания

Контроллер МИК-53H поставляется потребителю в соответствии с документацией заказа, разрабатываемой заказчиком, поэтому перед вводом в эксплуатацию необходимо проверить его комплектность.

При описании порядка включения предполагается, что все блоки установлены и закреплены на соответствующих стендах, а также выполнен электрический монтаж всех внешних соединений в соответствии с имеющимся проектом и данным руководством по эксплуатации.

Перед включением следует убедиться, что контроллер МИК-53H, его модификация и остальные параметры соответствуют проекту.

Подготовка к работе заключается в выполнении следующих процедур:

- Первое включение контроллера.
- Программирование контроллера.
- Калибровка, контроль и тестирование входов-выходов.
- Включение контроллера в управляющую сеть.

Некоторые процедуры (первое включение, калибровка, контроль и тестирование входов-выходов) можно выполнить при помощи лицевой панели контроллера. Порядок выполнения этих процедур описан в настоящем документе.

9.2 Первое включение контроллера

- 9.2.1 Подключить питающее напряжение к разъему прибора и модулю расширения (если такой имеется), как указано на схеме подключения.
- 9.2.2 Запрограммировать контроллер. Процедура программирования приведена в разделе 5.2. Если на лицевой панели не светится индикатор ПР (режим программирования, см. рис. 7.1), то нажать вместе клавиши [\circlearrowright] Меню + [N^{N} кн \downarrow] и ввести пароль. Должен засветиться индикатор ПР, что означает переход в режим программирования. Если на лицевой панели уже светится индикатор ПР «программирование», то данную операцию не выполнять.
- 9.2.3 Нажать клавишу [№кн ↑] номера уровней программирования на дисплее «№» КАНАЛ должны увеличиваться от 1 до 8 без пропусков. Нажать клавишу [№кн ↓] номера уровней программирования на дисплее «№» КАНАЛ должны уменьшаться от 8 до 1 без пропусков.

9.3 Программирование контроллера

- 9.3.1 На лицевой панели установить режим «программирование». Выполнить следующие операции (см. п. 5.2):
 - произвести очистку программы пользователя;
 - установить код комплектности, равный номеру модификации контроллера;
- проверить состав библиотеки алгоритмов и убедиться, что номер библиотеки соответствует модели контроллера, а номер версии соответствует указанной в документации на контроллер.
- 9.3.2 Порядок программирования. На лицевой панели установить режим «программирование». Процедуры программирования выполнить в следующей последовательности:
- настроить необходимое количество функциональных блоков, количество контуров регулирования, программных задатчиков и количество пользовательских панелей индикации и управления (процедура уровня 1):
 - установить параметры функциональных блоков (процедуры уровней 2, 3, 4);
 - установить (при необходимости) системные параметры (процедура уровня 6);
- записать (при необходимости) программу пользователя, настройки и параметры в энергонезависимую память контроллера (процедура уровня 8).
- 9.3.3 Установить процедуру «Настройка количества блоков» уровень 1. Ввести необходимое количество функциональных блоков, количество контуров регулирования, программных задатчиков и количества пользовательских панелей индикации и управления.

После ввода вышеперечисленной информации в контроллере формируется исполнительный программный модуль программы пользователя введенной с передней панели.

9.3.4 Установить процедуру «Программирование функциональных блоков» - уровень 2.

На данном уровне программируется номер функционального блока в программе пользователя, тип блока (согласно библиотеке функциональных блоков), базовый адрес параметров и модификатор количества входов и/или параметров.

По очереди, начиная с первого блока, ввести все требуемые функциональные блоки (см. п. 5.2).

Если какой-либо блок имеет модификатор также ввести и этот параметр. Если какие-либо блоки требуется пропустить, в них ввести блок с кодом 00.

9.3.5 Установить процедуру «программирование связей» (конфигурация) — уровень 3. Для всех входов всех блоков, которые должны быть связаны с входами других блоков или на которых должны задаваться коэффициенты, установить требуемую конфигурацию (см. п. 5.2).

Номера входов и выходов блоков устанавливаются индивидуально для каждого блока с контролем количества входов (и выходов) соответствующего типа.

- В процессе установки конфигурации при необходимости ввести также инверсию (только для связанных входов). При программировании связей, после ввода значения номера выхода на дисплее ВИХІД, нажатие клавиши [Завд.] устанавливает инверсию данной связи, что отображается символом «-».
- 9.3.6 Установить процедуру «настройка параметров» уровень 4. На данном уровне производится настройка параметров функциональных блоков. Для всех параметров всех блоков установить необходимые и соответствующие значения (см. п. 5.2).

На дисплее ВИХІД установить значение разрешения изменения параметров. Установка данного значения разрешает или запрещает производить изменение того или иного параметра в режиме РАБОТА. Состояние данного значения: 000 – запрещено изменять данный параметр в режиме РАБОТА, 001 – разрешено изменять данный параметр в режиме РАБОТА.

- 9.3.7 Перевести контроллер в режим «работа» и убедиться, что нет ошибок и отказов. Установить процедуру «системные параметры» уровень 6 (см. п. 5.2). Определить ресурс системы свободную память программ и данных. Для возможности последующего расширения алгоритмической структуры контроллера желательно, чтобы существовал определенный резерв. Если лимит памяти исчерпан, необходимо уменьшить объем решаемой задачи.
- 9.3.8 **Очистка программы пользователя.** Установить процедуру «Настройка количества блоков» уровень 1. При вводе значения «0000» в всех дисплеях производится очистка программы пользователя.

9.4 Калибровка, контроль и тестирование входов-выходов контроллера

Внимание! Данную операцию необходимо выполнить перед вводом новой программы.

9.4.1 Калибровка аналоговых входов

Калибровку аналоговых входов проводить в режиме ПРОГРАММИРОВАНИЕ на уровне 5 (режимы 05, 06, 07).

В соответствии с таблицей п. 5.2.1.5 выполнить автоматическую (режим 05) или ручную (режимы 06, 07) калибровки всех аналоговых входов.

Вначале выполнять калибровку начала шкалы измерения, для чего на калибруемый аналоговый вход контроллера подать сигнал, соответствующий началу шкалы диапазона (выбирается с таблицы 9.1).

Затем выполнить калибровку конца шкалы измерения, для чего на калибруемый аналоговый вход контроллера от эталона источника или датчика подать контролируемый сигнал, равный верхнему значению диапазона (выбирается с таблицы 9.1 для конкретного типа датчика).

Сохранить значения калибровочных констант в энергонезависимой памяти (см. раздел 9.6).

Тестирование аналоговых входов проводить в режиме ПРОГРАММИРОВАНИЕ на уровне 5 (режим 01).

Таблица 9.1 - Типы датчиков и рекомендуемые пределы калибровки

Код входа	Тип	Градировочная	Предельные	Диапазон изменения		
Параметр 2 nTYPE блока AIN	входного сигнала	характеристика и НСХ	индицируемые значения при калибровке прибора	Начал. значение	Конечное значение	
0000	0-5 мА 0-20 мА 4-20 мА 0-10 В	Линейная	0,0 100,0 % или в установленных технических единицах	0 mA 0 mA 4 mA 0 B	5 мА 20 мА 20 мА 10 В	
0001	0-5 мА 0-20 мА 4-20 мА 0-10 В	Квадратичная (Вход калибруется как линейный, затем устанавливается квадратичная шкала)	0,0 100,0 % или в установленных технических единицах	0 MA 0 MA 4 MA 0 B	5 мА 20 мА 20 мА 10 В	

9.4.2 Тестирование дискретных входов

Тестирование дискретных входов проводить в режиме ПРОГРАММИРОВАНИЕ на уровне 5 (режим 03).

На дискретном входе контроллера от имитатора (задатчика) сигналов подавать сигналы, равные 0 В (логический 0), и 24 В (логическая 1).

В соответствии с методикой п. 5.2.1.5 выполнить контроль всех дискретных входов.

Подавая на каждый дискретный вход контроллера сигнал сначала 0B, а затем 24B убедиться, что этим сигналам соответствуют значения 0 и 1.

9.4.3 Тестирование дискретных выходов

Тестирование дискретных выходов проводить в режиме ПРОГРАММИРОВАНИЕ на уровне 5 (режим 04).

Тестирование проводится в соответствии с методикой, изложенной в п. 5.2.1.5.

Установить по дисплею ЗАВДАННЯ на каждом выходе значение коэффициента сначала 0000, затем 0001. Работу дискретных выходов контролировать по состоянию дискретных нагрузок, подключенных к контроллеру.

9.5 Включение контроллера в локальную управляющую сеть

В информационную сеть контроллер МИК-53Н следует включать после проверки работы контроллера на объекте в автономном режиме.

Физическая организация сети представлена в разделе 3.2. Логическая организация сети представлена в разделе 3.3.

Для включения в сеть перейти в режим ПРОГРАММИРОВАНИЕ и установить режим «системные параметры» см. уровень 6, режим 02. В соответствии с проектом автоматизации установить сетевой адрес контроллера. Необходимо следить, чтобы у каждого контроллера, включенного в данную сеть, был свой неповторяющийся в других контроллерах сетевой адрес. Также в данном режиме необходимо установить скорость сетевого обмена и тайм-аут кадра запроса.

9.6 Сохранение программы пользователя и настроек в энергонезависимой памяти

Процедура сохранения программы пользователя и настроек в энергонезависимой памяти производится в режиме программирования на уровне 8.

После записи информации в энергонезависимую память изменяться могут лишь следующие параметры регулятора:

- оперативные параметры, изменение которых предусмотрено с помощью лицевой панели регулятора режимы работы регуляторов, режимы работы программных задатчиков, значение заданной точки регулятора, значение аналогового выходного воздействия регулятора в ручном режиме;
 - параметры функциональных блоков, изменение которых разрешено на уровне 4;
- изменение параметров функциональных блоков по сети (в режиме РАБОТА и в режиме ПРОГРАММИРОВАНИЕ).

Остальные параметры (системные, функциональные блоки, конфигурация, параметры функциональных блоков, изменение которых не разрешено на уровне 4) - изменять нельзя.

Поэтому запись информации в энергонезависимую память (на уровне 8) следует проводить лишь после тщательной отладки системы управления.

10 Техническое обслуживание

- 10.1 При правильной эксплуатации контроллер МИК-53Н не требует повседневного обслуживания.
- 10.2 Периодичность профилактических осмотров и ремонтов контроллера МИК-53H устанавливается в зависимости от производственных условий, но не реже двух раз в год.
- 10.3 При длительных перерывах в работе рекомендуется отключать контроллер МИК-53H от сети электропитания.
- 10.4 Во время профилактических осмотров: проверять и чистить кабельные части соединений (вскрытие контроллера МИК-53H не допускается); проверять прочность крепления блока, монтажных жгутов; проверять состояние заземляющих проводников в местах соединений.
- 10.5 Очистка прибора: Не используйте растворители и подобные вещества. Для очистки устройства пользуйтесь спиртом.

11 Транспортирование и хранение

- 11.1 Транспортирование контроллера МИК-53Н допускается только в упаковке предприятия-изготовителя и может производиться любым видом транспорта.
 - 11.2 При получении контроллера МИК-53Н убедиться в полной сохранности тары.

- 11.3 После транспортирования контроллера МИК-53Н необходимо выдержать в помещении с нормальными условиями не менее 6-ти часов, только после этого произвести распаковку.
 - 11.4 Предельный срок хранения один год.
- 11.5 Контроллеры МИК-53H должны храниться в сухом отапливаемом и вентилируемом помещении при температуре окружающего воздуха от -40°C до +70°C и относительной влажности от 30 до 80% (без конденсации влаги). Данные требования являются рекомендуемыми.
- 11.6 Воздух в помещении не должен содержать пыли и примеси агрессивных паров и газов, вызывающих коррозию (в частности: газов, содержащих сернистые соединения или аммиак).
- 11.7 В процессе хранения или эксплуатации не кладите тяжелые предметы на контроллер МИК-53Н и не подвергайте его никакому механическому воздействию, так как устройство может деформироваться и повредиться.

12 Гарантии изготовителя

- 12.1 Производитель гарантирует соответствие прибора техническим условиям ТУ У 33.2-13647695-013:2006. При не соблюдении потребителем требований условий транспортирования, хранения, монтажа, наладки и эксплуатации, указанных в настоящем руководстве, потребитель лишается права на гарантию.
- 12.2 Гарантийный срок эксплуатации 5 лет со дня отгрузки изделия. Гарантийный срок эксплуатации изделий, которые поставляются на экспорт 18 месяцев со дня проследования их через государственную границу Украины.
- 12.3 По договоренности с потребителем предприятие-изготовитель осуществляет послегарантийное техническое обслуживание, техническую поддержку и технические консультации по всем видам своей продукции.

Лист регистрации изменений

Изм.	Номера	листов (стр	В Входящий № сопровождаю-		Подп.	Дата		
	Изме- ненных	Заме- ненных	Но- вых	докумен те	документа	щего документа и дата		
1.00				68	ver. 53.85		Марикот	28.07.2015
1.01				69	ver. 53.90	Приведен в соответствие с новой прошивкой	Д.Я. Марикот Д.Я.	09.11.2015
1.02				69	ver. 53.92	Добавлены сетевые параметры – контроль	д.л. Марикот Д.Я.	30.03.2016
1.03				70	ver. 53.92	четности и стоп-бит Изменены характеристики дискретных входов	Марикот Д.Я.	24.02.2017